一种改进的LDPC码归一化最小和算法

Jinlei Chen, Yan Zhang, Ruiyi Sun
{"title":"一种改进的LDPC码归一化最小和算法","authors":"Jinlei Chen, Yan Zhang, Ruiyi Sun","doi":"10.1109/ICIS.2013.6607890","DOIUrl":null,"url":null,"abstract":"An improved normalized min-sum (IN-MS) algorithm is proposed for decoding low-density parity-check (LDPC) codes. In this algorithm, two normalized factors are used in check node computing, one for the minimum data and another for the second minimum data, and this algorithm achieves a better approximation to the BP algorithm. Simulation results show that the decoding performance of IN-MS algorithm is better than that of the normalized min-sum (NMS) algorithm.","PeriodicalId":345020,"journal":{"name":"2013 IEEE/ACIS 12th International Conference on Computer and Information Science (ICIS)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An improved normalized min-sum algorithm for LDPC codes\",\"authors\":\"Jinlei Chen, Yan Zhang, Ruiyi Sun\",\"doi\":\"10.1109/ICIS.2013.6607890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An improved normalized min-sum (IN-MS) algorithm is proposed for decoding low-density parity-check (LDPC) codes. In this algorithm, two normalized factors are used in check node computing, one for the minimum data and another for the second minimum data, and this algorithm achieves a better approximation to the BP algorithm. Simulation results show that the decoding performance of IN-MS algorithm is better than that of the normalized min-sum (NMS) algorithm.\",\"PeriodicalId\":345020,\"journal\":{\"name\":\"2013 IEEE/ACIS 12th International Conference on Computer and Information Science (ICIS)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE/ACIS 12th International Conference on Computer and Information Science (ICIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIS.2013.6607890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE/ACIS 12th International Conference on Computer and Information Science (ICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIS.2013.6607890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种改进的归一化最小和(IN-MS)算法用于低密度奇偶校验码的译码。该算法在检查节点计算中使用两个归一化因子,一个用于最小数据,另一个用于第二次最小数据,该算法达到了较好的近似BP算法。仿真结果表明,IN-MS算法的译码性能优于归一化最小和(NMS)算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved normalized min-sum algorithm for LDPC codes
An improved normalized min-sum (IN-MS) algorithm is proposed for decoding low-density parity-check (LDPC) codes. In this algorithm, two normalized factors are used in check node computing, one for the minimum data and another for the second minimum data, and this algorithm achieves a better approximation to the BP algorithm. Simulation results show that the decoding performance of IN-MS algorithm is better than that of the normalized min-sum (NMS) algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信