{"title":"薄壁叶片结构设计功能梯度材料模型对比研究","authors":"T. Farsadi","doi":"10.18038/estubtda.867690","DOIUrl":null,"url":null,"abstract":"In this work, three theories of Functionally Graded Material (FGM) are compared for structural dynamic and static performance of the thin-walled rotating blade. For this purpose, the pretwisted Thin Wall Rotating Beam (TWRB) with a fixed angular velocity is considered. The goal is to find the desirable FG model with improved free vibration, static deformation, and buckling behavior of the FGM blades. The Euler–Lagrange equations of motion of the energetic system are extracted utilizing Hamilton's principle. The Extended Galerkin`s Method (EGM) is used to solve the governing equation of motions. The effects of some parameters, such as the FGM models, angular velocity, and pretwist angle on the mechanical behavior of the FG beams are studied.","PeriodicalId":436776,"journal":{"name":"Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COMPARATIVE STUDY OF FUNCTIONALLY GRADED MATERIAL MODELS FOR STRUCTURAL DESIGN OF THIN-WALLED BLADES\",\"authors\":\"T. Farsadi\",\"doi\":\"10.18038/estubtda.867690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, three theories of Functionally Graded Material (FGM) are compared for structural dynamic and static performance of the thin-walled rotating blade. For this purpose, the pretwisted Thin Wall Rotating Beam (TWRB) with a fixed angular velocity is considered. The goal is to find the desirable FG model with improved free vibration, static deformation, and buckling behavior of the FGM blades. The Euler–Lagrange equations of motion of the energetic system are extracted utilizing Hamilton's principle. The Extended Galerkin`s Method (EGM) is used to solve the governing equation of motions. The effects of some parameters, such as the FGM models, angular velocity, and pretwist angle on the mechanical behavior of the FG beams are studied.\",\"PeriodicalId\":436776,\"journal\":{\"name\":\"Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18038/estubtda.867690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18038/estubtda.867690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
COMPARATIVE STUDY OF FUNCTIONALLY GRADED MATERIAL MODELS FOR STRUCTURAL DESIGN OF THIN-WALLED BLADES
In this work, three theories of Functionally Graded Material (FGM) are compared for structural dynamic and static performance of the thin-walled rotating blade. For this purpose, the pretwisted Thin Wall Rotating Beam (TWRB) with a fixed angular velocity is considered. The goal is to find the desirable FG model with improved free vibration, static deformation, and buckling behavior of the FGM blades. The Euler–Lagrange equations of motion of the energetic system are extracted utilizing Hamilton's principle. The Extended Galerkin`s Method (EGM) is used to solve the governing equation of motions. The effects of some parameters, such as the FGM models, angular velocity, and pretwist angle on the mechanical behavior of the FG beams are studied.