presburger算术的初等界

D. Oppen
{"title":"presburger算术的初等界","authors":"D. Oppen","doi":"10.1145/800125.804033","DOIUrl":null,"url":null,"abstract":"We consider the first-order theory whose language has as nonlogical symbols the constant symbols 0 and 1, the binary relation symbols = and <, the unary function symbol − and the binary function symbol + This theory of integers under addition is commonly called the 'Presburger Arithmetic' and is known to be decidable for truth [Presburger (1929), Hilbert and Bernays (1968)]. We prove here that there exists a decision procedure for this theory, involving quantifier elimination, for which there is a superexponential upper bound on the size of formula produced when all variables have been eliminated.","PeriodicalId":242946,"journal":{"name":"Proceedings of the fifth annual ACM symposium on Theory of computing","volume":"158 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1973-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Elementary bounds for presburger arithmetic\",\"authors\":\"D. Oppen\",\"doi\":\"10.1145/800125.804033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the first-order theory whose language has as nonlogical symbols the constant symbols 0 and 1, the binary relation symbols = and <, the unary function symbol − and the binary function symbol + This theory of integers under addition is commonly called the 'Presburger Arithmetic' and is known to be decidable for truth [Presburger (1929), Hilbert and Bernays (1968)]. We prove here that there exists a decision procedure for this theory, involving quantifier elimination, for which there is a superexponential upper bound on the size of formula produced when all variables have been eliminated.\",\"PeriodicalId\":242946,\"journal\":{\"name\":\"Proceedings of the fifth annual ACM symposium on Theory of computing\",\"volume\":\"158 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1973-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the fifth annual ACM symposium on Theory of computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/800125.804033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the fifth annual ACM symposium on Theory of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800125.804033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

我们考虑一阶理论,它的语言具有非逻辑符号:常数符号0和1,二元关系符号=和<,一元函数符号-和二元函数符号+。这种整数加法理论通常被称为“普雷斯伯格算术”,并被认为是可判定的真理[普雷斯伯格(1929),希尔伯特和伯奈斯(1968)]。我们在此证明了该理论存在一个涉及量词消去的决策过程,当所有变量消去后所产生的公式的大小有一个超指数上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elementary bounds for presburger arithmetic
We consider the first-order theory whose language has as nonlogical symbols the constant symbols 0 and 1, the binary relation symbols = and <, the unary function symbol − and the binary function symbol + This theory of integers under addition is commonly called the 'Presburger Arithmetic' and is known to be decidable for truth [Presburger (1929), Hilbert and Bernays (1968)]. We prove here that there exists a decision procedure for this theory, involving quantifier elimination, for which there is a superexponential upper bound on the size of formula produced when all variables have been eliminated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信