身份识别与时空整合学习的面部表情识别

Jianing Teng, Dong Zhang, Ming Li, Yudong Huang
{"title":"身份识别与时空整合学习的面部表情识别","authors":"Jianing Teng, Dong Zhang, Ming Li, Yudong Huang","doi":"10.1109/ACIIW.2019.8925212","DOIUrl":null,"url":null,"abstract":"Spatial-temporal structure of expression frames plays a critical role in the task of video based facial expression recognition (FER). In this paper, we propose a 3D CNN based framework to learn the spatial-temporal structure from expression frames for video-based FER. First, we use the data labeled with identities to train an identity network to capture the facial biometric features from expression frames. Second, we remove the impact of facial biometric features from the expression features and construct typical facial expression (TFE) features. Then, we feed the TFE features to a 3D network to discover spatial-temporal structure of expression frames. In the end, we feed the spatial-temporal vector to a fully-connected layer to get a vector for classification. The proposed method achieves comparable accuracy with the state-of-art of 88.54% on Oulu-CASIA, and is efficient to be used for the task of video-based FER.","PeriodicalId":193568,"journal":{"name":"2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Facial Expression Recognition with Identity and Spatial-temporal Integrated Learning\",\"authors\":\"Jianing Teng, Dong Zhang, Ming Li, Yudong Huang\",\"doi\":\"10.1109/ACIIW.2019.8925212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial-temporal structure of expression frames plays a critical role in the task of video based facial expression recognition (FER). In this paper, we propose a 3D CNN based framework to learn the spatial-temporal structure from expression frames for video-based FER. First, we use the data labeled with identities to train an identity network to capture the facial biometric features from expression frames. Second, we remove the impact of facial biometric features from the expression features and construct typical facial expression (TFE) features. Then, we feed the TFE features to a 3D network to discover spatial-temporal structure of expression frames. In the end, we feed the spatial-temporal vector to a fully-connected layer to get a vector for classification. The proposed method achieves comparable accuracy with the state-of-art of 88.54% on Oulu-CASIA, and is efficient to be used for the task of video-based FER.\",\"PeriodicalId\":193568,\"journal\":{\"name\":\"2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACIIW.2019.8925212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIIW.2019.8925212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

表情帧的时空结构在基于视频的面部表情识别中起着至关重要的作用。在本文中,我们提出了一个基于3D CNN的框架来学习基于视频的表达帧的时空结构。首先,我们使用带有身份标记的数据来训练身份网络,从表情帧中捕获面部生物特征。其次,从表情特征中去除面部生物特征的影响,构建典型面部表情特征;然后,我们将TFE特征馈送到三维网络中,以发现表达框架的时空结构。最后,我们将时空向量馈送到一个全连接层,得到一个用于分类的向量。该方法在Oulu-CASIA上的准确率达到了目前的88.54%,可以有效地用于基于视频的FER任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Facial Expression Recognition with Identity and Spatial-temporal Integrated Learning
Spatial-temporal structure of expression frames plays a critical role in the task of video based facial expression recognition (FER). In this paper, we propose a 3D CNN based framework to learn the spatial-temporal structure from expression frames for video-based FER. First, we use the data labeled with identities to train an identity network to capture the facial biometric features from expression frames. Second, we remove the impact of facial biometric features from the expression features and construct typical facial expression (TFE) features. Then, we feed the TFE features to a 3D network to discover spatial-temporal structure of expression frames. In the end, we feed the spatial-temporal vector to a fully-connected layer to get a vector for classification. The proposed method achieves comparable accuracy with the state-of-art of 88.54% on Oulu-CASIA, and is efficient to be used for the task of video-based FER.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信