振荡热管中单向循环流动现象

Chunrong Yu, Yulong Ji, L. Chu, Zongyu Wang, Yadong Li, Hongbin Ma
{"title":"振荡热管中单向循环流动现象","authors":"Chunrong Yu, Yulong Ji, L. Chu, Zongyu Wang, Yadong Li, Hongbin Ma","doi":"10.1115/mnhmt2019-3937","DOIUrl":null,"url":null,"abstract":"\n The phenomena of two different types of unidirectional circulating flow pattern in a copper oscillating heat pipe (OHP) were firstly discovered and investigated. The OHP has six turns and three sections: evaporator, condenser and adiabatic sections with lengths of 40 mm, 64 mm, and 51 mm, respectively. R152a was used as the working fluid, the effects of the tilt angle from 0° to 90° and the heat input on the flow and heat transfer of the working fluid in OHP was studied. The experimental results showed that (1) the OHP charged with R152a can form a unidirectional circulating flow at any tilt angle under certain heat input, and the unidirectional circulating flow become steady as the heat input increases; (2) another type of circulating flow was found in the same OHP as the heat input increased to a relative high level, the difference between the two types of circulating flow is that the liquid slugs move forward with or without back forward oscillating movement; (3) the unidirectional circulating flow of the working fluid without back forward oscillating movement in the OHP significantly enhance the heat transfer of OHP.","PeriodicalId":331854,"journal":{"name":"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Phenomenon of Unidirectional Circulating Flow in an Oscillating Heat Pipe\",\"authors\":\"Chunrong Yu, Yulong Ji, L. Chu, Zongyu Wang, Yadong Li, Hongbin Ma\",\"doi\":\"10.1115/mnhmt2019-3937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The phenomena of two different types of unidirectional circulating flow pattern in a copper oscillating heat pipe (OHP) were firstly discovered and investigated. The OHP has six turns and three sections: evaporator, condenser and adiabatic sections with lengths of 40 mm, 64 mm, and 51 mm, respectively. R152a was used as the working fluid, the effects of the tilt angle from 0° to 90° and the heat input on the flow and heat transfer of the working fluid in OHP was studied. The experimental results showed that (1) the OHP charged with R152a can form a unidirectional circulating flow at any tilt angle under certain heat input, and the unidirectional circulating flow become steady as the heat input increases; (2) another type of circulating flow was found in the same OHP as the heat input increased to a relative high level, the difference between the two types of circulating flow is that the liquid slugs move forward with or without back forward oscillating movement; (3) the unidirectional circulating flow of the working fluid without back forward oscillating movement in the OHP significantly enhance the heat transfer of OHP.\",\"PeriodicalId\":331854,\"journal\":{\"name\":\"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/mnhmt2019-3937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/mnhmt2019-3937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

首次发现并研究了铜振荡热管(OHP)内两种不同类型的单向循环流动现象。OHP有6个弯和3个部分:蒸发器、冷凝器和绝热部分,长度分别为40毫米、64毫米和51毫米。以R152a为工质,研究了0°~ 90°倾斜角度和热量输入对OHP内工质流动和换热的影响。实验结果表明:(1)在一定的热输入下,充装R152a的OHP可形成任意倾角的单向循环流动,且单向循环流动随着热输入的增加而趋于稳定;(2)当热输入增加到较高水平时,在相同的OHP内发现了另一种循环流动,两种循环流动的区别在于液塞有或没有前后振荡运动;(3)工作流体的单向循环流动在高压室内无前后振荡运动,显著增强了高压室内的换热。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Phenomenon of Unidirectional Circulating Flow in an Oscillating Heat Pipe
The phenomena of two different types of unidirectional circulating flow pattern in a copper oscillating heat pipe (OHP) were firstly discovered and investigated. The OHP has six turns and three sections: evaporator, condenser and adiabatic sections with lengths of 40 mm, 64 mm, and 51 mm, respectively. R152a was used as the working fluid, the effects of the tilt angle from 0° to 90° and the heat input on the flow and heat transfer of the working fluid in OHP was studied. The experimental results showed that (1) the OHP charged with R152a can form a unidirectional circulating flow at any tilt angle under certain heat input, and the unidirectional circulating flow become steady as the heat input increases; (2) another type of circulating flow was found in the same OHP as the heat input increased to a relative high level, the difference between the two types of circulating flow is that the liquid slugs move forward with or without back forward oscillating movement; (3) the unidirectional circulating flow of the working fluid without back forward oscillating movement in the OHP significantly enhance the heat transfer of OHP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信