基于逆细分的b样条曲面重构

Khoi Nguyen-Tan, Romain Raffin, M. Daniel, C. Le
{"title":"基于逆细分的b样条曲面重构","authors":"Khoi Nguyen-Tan, Romain Raffin, M. Daniel, C. Le","doi":"10.1109/RIVF.2009.5174628","DOIUrl":null,"url":null,"abstract":"This paper presents a method to reconstruct a B-spline surface from a quadrangular mesh, using an inverse Catmull-Clark subdivision. We want to minimize the surface contraction due to the approximating subdivision scheme. We introduce geometrical operations which minimize the impact of the subdivision approximation and can be used in the parametric surface reconstruction. The quality of the method is evaluated by criteria of distances, curvatures or computing time on experimental results.","PeriodicalId":243397,"journal":{"name":"2009 IEEE-RIVF International Conference on Computing and Communication Technologies","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"B-spline Surface Reconstruction by Inverse Subdivisions\",\"authors\":\"Khoi Nguyen-Tan, Romain Raffin, M. Daniel, C. Le\",\"doi\":\"10.1109/RIVF.2009.5174628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method to reconstruct a B-spline surface from a quadrangular mesh, using an inverse Catmull-Clark subdivision. We want to minimize the surface contraction due to the approximating subdivision scheme. We introduce geometrical operations which minimize the impact of the subdivision approximation and can be used in the parametric surface reconstruction. The quality of the method is evaluated by criteria of distances, curvatures or computing time on experimental results.\",\"PeriodicalId\":243397,\"journal\":{\"name\":\"2009 IEEE-RIVF International Conference on Computing and Communication Technologies\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE-RIVF International Conference on Computing and Communication Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RIVF.2009.5174628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE-RIVF International Conference on Computing and Communication Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF.2009.5174628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种利用逆Catmull-Clark细分法从四边形网格重构b样条曲面的方法。我们希望最小化由于近似细分方案引起的表面收缩。我们引入几何运算,使细分近似的影响最小化,并可用于参数化表面重建。用距离、曲率或计算时间等标准对实验结果进行评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
B-spline Surface Reconstruction by Inverse Subdivisions
This paper presents a method to reconstruct a B-spline surface from a quadrangular mesh, using an inverse Catmull-Clark subdivision. We want to minimize the surface contraction due to the approximating subdivision scheme. We introduce geometrical operations which minimize the impact of the subdivision approximation and can be used in the parametric surface reconstruction. The quality of the method is evaluated by criteria of distances, curvatures or computing time on experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信