使用上下文和视听特征检测语义概念

M. Naphade, Thomas S. Huang
{"title":"使用上下文和视听特征检测语义概念","authors":"M. Naphade, Thomas S. Huang","doi":"10.1109/EVENT.2001.938871","DOIUrl":null,"url":null,"abstract":"Detection of high-level semantics from audio-visual data is a challenging multimedia understanding problem. The difficulty mainly lies in the gap that exists between low level media features and high level semantic concepts. In an attempt to bridge this gap, Naphade et al. (see Proceedings of Workshop on Content Based Access to Image and Video Libraries, p.35-39, 2000 and Proceedings of IEEE International Conference on Image Processing, Chicago, IL, vol.3, p.536-40, 1998) proposed a probabilistic framework for semantic understanding. The components of this framework are probabilistic multimedia objects and a graphical network of such objects. We show how the framework supports detection of multiple high-level concepts, which enjoy spatial and temporal-support. More importantly, we show why context matters and how it can be modeled. Using a factor graph framework, we model context and use it to improve detection of sites, objects and events. Using concepts outdoor and flying-helicopter we demonstrate how the factor graph multinet models context and uses it for late integration of multimodal features. Using ROC curves and probability of error curves we support the intuition that context should help.","PeriodicalId":375539,"journal":{"name":"Proceedings IEEE Workshop on Detection and Recognition of Events in Video","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Detecting semantic concepts using context and audiovisual features\",\"authors\":\"M. Naphade, Thomas S. Huang\",\"doi\":\"10.1109/EVENT.2001.938871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detection of high-level semantics from audio-visual data is a challenging multimedia understanding problem. The difficulty mainly lies in the gap that exists between low level media features and high level semantic concepts. In an attempt to bridge this gap, Naphade et al. (see Proceedings of Workshop on Content Based Access to Image and Video Libraries, p.35-39, 2000 and Proceedings of IEEE International Conference on Image Processing, Chicago, IL, vol.3, p.536-40, 1998) proposed a probabilistic framework for semantic understanding. The components of this framework are probabilistic multimedia objects and a graphical network of such objects. We show how the framework supports detection of multiple high-level concepts, which enjoy spatial and temporal-support. More importantly, we show why context matters and how it can be modeled. Using a factor graph framework, we model context and use it to improve detection of sites, objects and events. Using concepts outdoor and flying-helicopter we demonstrate how the factor graph multinet models context and uses it for late integration of multimodal features. Using ROC curves and probability of error curves we support the intuition that context should help.\",\"PeriodicalId\":375539,\"journal\":{\"name\":\"Proceedings IEEE Workshop on Detection and Recognition of Events in Video\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE Workshop on Detection and Recognition of Events in Video\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EVENT.2001.938871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Workshop on Detection and Recognition of Events in Video","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EVENT.2001.938871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

从视听数据中检测高级语义是一个具有挑战性的多媒体理解问题。难点主要在于低层次的媒介特征与高层次的语义概念之间存在差距。为了弥补这一差距,Naphade等人(参见2000年《基于内容的图像和视频库访问研讨会论文集》,第35-39页,以及1998年《IEEE图像处理国际会议论文集》,伊利诺伊州芝加哥,第3卷,第536-40页)提出了一个语义理解的概率框架。该框架的组成部分是概率多媒体对象和这些对象的图形网络。我们展示了该框架如何支持多个高级概念的检测,这些概念享有空间和时间支持。更重要的是,我们展示了为什么上下文很重要以及如何对其进行建模。使用因子图框架,我们对上下文进行建模,并使用它来改进对站点、对象和事件的检测。使用户外和飞行直升机的概念,我们演示了因素图多网络如何建模上下文,并将其用于多模式特征的后期集成。使用ROC曲线和误差概率曲线,我们支持上下文应该有所帮助的直觉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting semantic concepts using context and audiovisual features
Detection of high-level semantics from audio-visual data is a challenging multimedia understanding problem. The difficulty mainly lies in the gap that exists between low level media features and high level semantic concepts. In an attempt to bridge this gap, Naphade et al. (see Proceedings of Workshop on Content Based Access to Image and Video Libraries, p.35-39, 2000 and Proceedings of IEEE International Conference on Image Processing, Chicago, IL, vol.3, p.536-40, 1998) proposed a probabilistic framework for semantic understanding. The components of this framework are probabilistic multimedia objects and a graphical network of such objects. We show how the framework supports detection of multiple high-level concepts, which enjoy spatial and temporal-support. More importantly, we show why context matters and how it can be modeled. Using a factor graph framework, we model context and use it to improve detection of sites, objects and events. Using concepts outdoor and flying-helicopter we demonstrate how the factor graph multinet models context and uses it for late integration of multimodal features. Using ROC curves and probability of error curves we support the intuition that context should help.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信