一种基于同类标签比例的最近邻分类原型生成方法

Jui-Le Chen, Ko-Wei Huang, Pang-Wei Tsai, Chu-Sing Yang
{"title":"一种基于同类标签比例的最近邻分类原型生成方法","authors":"Jui-Le Chen, Ko-Wei Huang, Pang-Wei Tsai, Chu-Sing Yang","doi":"10.1109/ICCE-TW.2015.7217050","DOIUrl":null,"url":null,"abstract":"The KNN algorithm has a significant effect on classification prediction in Data Mining. In order to solve the drawbacks for KNN algorithm to reduce the costs of the calculation and increase the accuracy, this paper proposed a prototype generation method with same class label proportion for classification to ensure that each class has at least a prototype to be represented. We compare the average success rate of GA, PSO, DE and proposed method SPDE. The experimental results show that the SPDE has more opportunity to do better than others in those problems.","PeriodicalId":340402,"journal":{"name":"2015 IEEE International Conference on Consumer Electronics - Taiwan","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A prototype generation with same class label proportion method for nearest neighborhood classification\",\"authors\":\"Jui-Le Chen, Ko-Wei Huang, Pang-Wei Tsai, Chu-Sing Yang\",\"doi\":\"10.1109/ICCE-TW.2015.7217050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The KNN algorithm has a significant effect on classification prediction in Data Mining. In order to solve the drawbacks for KNN algorithm to reduce the costs of the calculation and increase the accuracy, this paper proposed a prototype generation method with same class label proportion for classification to ensure that each class has at least a prototype to be represented. We compare the average success rate of GA, PSO, DE and proposed method SPDE. The experimental results show that the SPDE has more opportunity to do better than others in those problems.\",\"PeriodicalId\":340402,\"journal\":{\"name\":\"2015 IEEE International Conference on Consumer Electronics - Taiwan\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Consumer Electronics - Taiwan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-TW.2015.7217050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Consumer Electronics - Taiwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-TW.2015.7217050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

KNN算法在数据挖掘中的分类预测方面有着重要的作用。为了解决KNN算法存在的缺点,降低计算成本,提高准确率,本文提出了一种具有相同类别标签比例的原型生成方法进行分类,保证每个类别至少有一个原型可以表示。我们比较了GA、PSO、DE和SPDE方法的平均成功率。实验结果表明,SPDE有更多的机会在这些问题上做得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A prototype generation with same class label proportion method for nearest neighborhood classification
The KNN algorithm has a significant effect on classification prediction in Data Mining. In order to solve the drawbacks for KNN algorithm to reduce the costs of the calculation and increase the accuracy, this paper proposed a prototype generation method with same class label proportion for classification to ensure that each class has at least a prototype to be represented. We compare the average success rate of GA, PSO, DE and proposed method SPDE. The experimental results show that the SPDE has more opportunity to do better than others in those problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信