仿真建模、实验、分析和实现

L. Schruben
{"title":"仿真建模、实验、分析和实现","authors":"L. Schruben","doi":"10.1109/WSC.2013.6721461","DOIUrl":null,"url":null,"abstract":"Textbooks sometimes describe building models, running experiments, analyzing outputs, and implementing results as distinct activities in a simulation project. This paper demonstrates advantages of combining these activities in the context of system performance optimization. Simulation optimization algorithms can be improved by exploiting the ability to observe and change literally anything at any time while a simulation is running. It is also not necessary to stop simulating candidates for the optimal system before starting to simulate others. The ability to observe and change many concurrently running simulated systems considerably expands the possibilities for designing simulation experiments. Examples are presented for a range of simulation optimization algorithms including randomized search, directional search, pattern search, and agent-based particle swarm optimization.","PeriodicalId":223717,"journal":{"name":"2013 Winter Simulations Conference (WSC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Simulation modeling, experimenting, analysis, and implementation\",\"authors\":\"L. Schruben\",\"doi\":\"10.1109/WSC.2013.6721461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Textbooks sometimes describe building models, running experiments, analyzing outputs, and implementing results as distinct activities in a simulation project. This paper demonstrates advantages of combining these activities in the context of system performance optimization. Simulation optimization algorithms can be improved by exploiting the ability to observe and change literally anything at any time while a simulation is running. It is also not necessary to stop simulating candidates for the optimal system before starting to simulate others. The ability to observe and change many concurrently running simulated systems considerably expands the possibilities for designing simulation experiments. Examples are presented for a range of simulation optimization algorithms including randomized search, directional search, pattern search, and agent-based particle swarm optimization.\",\"PeriodicalId\":223717,\"journal\":{\"name\":\"2013 Winter Simulations Conference (WSC)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Winter Simulations Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2013.6721461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Winter Simulations Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2013.6721461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

教科书有时将构建模型、运行实验、分析输出和实现结果描述为模拟项目中的不同活动。本文演示了在系统性能优化上下文中将这些活动结合起来的优点。仿真优化算法可以通过利用在运行仿真时随时观察和更改任何内容的能力来改进。在开始模拟其他系统之前,也没有必要停止模拟最优系统的候选系统。观察和改变许多并发运行的模拟系统的能力大大扩展了设计模拟实验的可能性。给出了一系列仿真优化算法的实例,包括随机搜索、定向搜索、模式搜索和基于智能体的粒子群优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation modeling, experimenting, analysis, and implementation
Textbooks sometimes describe building models, running experiments, analyzing outputs, and implementing results as distinct activities in a simulation project. This paper demonstrates advantages of combining these activities in the context of system performance optimization. Simulation optimization algorithms can be improved by exploiting the ability to observe and change literally anything at any time while a simulation is running. It is also not necessary to stop simulating candidates for the optimal system before starting to simulate others. The ability to observe and change many concurrently running simulated systems considerably expands the possibilities for designing simulation experiments. Examples are presented for a range of simulation optimization algorithms including randomized search, directional search, pattern search, and agent-based particle swarm optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信