合成图像与真实图像分割的混合主动轮廓模型

Ehtesham Iqbal, Asim Niaz, A. Munir, K. Choi
{"title":"合成图像与真实图像分割的混合主动轮廓模型","authors":"Ehtesham Iqbal, Asim Niaz, A. Munir, K. Choi","doi":"10.1109/ISPACS51563.2021.9651047","DOIUrl":null,"url":null,"abstract":"Level set models are extensively used for image segmentation because of their capability to handle topological changes. In this paper, the proposed model uses combined local image information and global image information to evolve the con-tour around the object boundary, making it robust, irrespective of the inhomogeneity. The proposed model is capable to deal with bias conditions, such as intensity inhomogeneity and light effects. We test this model on synthetic, and real images, confirming its superiority over previous models.","PeriodicalId":359822,"journal":{"name":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Active Contour Model for Segmentation of Synthetic and Real Images\",\"authors\":\"Ehtesham Iqbal, Asim Niaz, A. Munir, K. Choi\",\"doi\":\"10.1109/ISPACS51563.2021.9651047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Level set models are extensively used for image segmentation because of their capability to handle topological changes. In this paper, the proposed model uses combined local image information and global image information to evolve the con-tour around the object boundary, making it robust, irrespective of the inhomogeneity. The proposed model is capable to deal with bias conditions, such as intensity inhomogeneity and light effects. We test this model on synthetic, and real images, confirming its superiority over previous models.\",\"PeriodicalId\":359822,\"journal\":{\"name\":\"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS51563.2021.9651047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS51563.2021.9651047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

水平集模型由于其处理拓扑变化的能力而广泛用于图像分割。在本文中,该模型结合了局部图像信息和全局图像信息来进化目标边界周围的轮廓,使其在不考虑非均匀性的情况下具有鲁棒性。该模型能够处理诸如强度不均匀性和光效应等偏置条件。我们在合成图像和真实图像上对该模型进行了测试,证实了该模型优于以前的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Active Contour Model for Segmentation of Synthetic and Real Images
Level set models are extensively used for image segmentation because of their capability to handle topological changes. In this paper, the proposed model uses combined local image information and global image information to evolve the con-tour around the object boundary, making it robust, irrespective of the inhomogeneity. The proposed model is capable to deal with bias conditions, such as intensity inhomogeneity and light effects. We test this model on synthetic, and real images, confirming its superiority over previous models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信