小麦耐旱性改良的基因组学和分子生理学研究。

S. Sareen, P. Saini, Charan Singh, P. Kumar, S. Sheoran
{"title":"小麦耐旱性改良的基因组学和分子生理学研究。","authors":"S. Sareen, P. Saini, Charan Singh, P. Kumar, S. Sheoran","doi":"10.1079/9781789245431.0004","DOIUrl":null,"url":null,"abstract":"Abstract\n This chapter discusses the complexity of drought tolerance in wheat focusing the morphological, biochemical, physiological and molecular responses. The breeding approaches, such as traditional and genomics-assisted strategies, for drought tolerance in wheat are described. Future perspectives are also mentioned. Before wheat genome sequencing, it was very difficult to dissect drought tolerance genomic regions because of large genome size and repetitive sequences. But with the availability of sequencing approaches, a large number of genomic resources has become available which extend the scope of utilization of advanced genomics approaches such as GWAM and GS, MutMap+, etc. A new genome editing approach, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPRassociated protein 9 (Cas9) system, can also be utilized for enhancement of drought tolerance in wheat. Therefore, integration of genomic approaches with precise phenotyping is the need of the hour for improving drought tolerance in wheat.","PeriodicalId":424023,"journal":{"name":"Molecular breeding in wheat, maize and sorghum: strategies for improving abiotic stress tolerance and yield","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genomics and molecular physiology for improvement of drought tolerance in wheat.\",\"authors\":\"S. Sareen, P. Saini, Charan Singh, P. Kumar, S. Sheoran\",\"doi\":\"10.1079/9781789245431.0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract\\n This chapter discusses the complexity of drought tolerance in wheat focusing the morphological, biochemical, physiological and molecular responses. The breeding approaches, such as traditional and genomics-assisted strategies, for drought tolerance in wheat are described. Future perspectives are also mentioned. Before wheat genome sequencing, it was very difficult to dissect drought tolerance genomic regions because of large genome size and repetitive sequences. But with the availability of sequencing approaches, a large number of genomic resources has become available which extend the scope of utilization of advanced genomics approaches such as GWAM and GS, MutMap+, etc. A new genome editing approach, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPRassociated protein 9 (Cas9) system, can also be utilized for enhancement of drought tolerance in wheat. Therefore, integration of genomic approaches with precise phenotyping is the need of the hour for improving drought tolerance in wheat.\",\"PeriodicalId\":424023,\"journal\":{\"name\":\"Molecular breeding in wheat, maize and sorghum: strategies for improving abiotic stress tolerance and yield\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular breeding in wheat, maize and sorghum: strategies for improving abiotic stress tolerance and yield\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1079/9781789245431.0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular breeding in wheat, maize and sorghum: strategies for improving abiotic stress tolerance and yield","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1079/9781789245431.0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本章从形态、生化、生理和分子等方面探讨了小麦抗旱性的复杂性。介绍了小麦抗旱性的传统育种方法和基因组学辅助育种方法。未来的展望也被提及。在小麦基因组测序之前,由于小麦基因组的大尺寸和重复序列,对耐旱基因组区域进行解剖是非常困难的。但随着测序方法的可用性,大量基因组资源的可用性扩大了先进基因组学方法的使用范围,如GWAM和GS、MutMap+等。一种新的基因组编辑方法,即聚集规律间隔短回文重复序列(CRISPR)/CRISPR相关蛋白9 (Cas9)系统,也可用于增强小麦的耐旱性。因此,整合基因组方法和精确表型是提高小麦耐旱性的迫切需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genomics and molecular physiology for improvement of drought tolerance in wheat.
Abstract This chapter discusses the complexity of drought tolerance in wheat focusing the morphological, biochemical, physiological and molecular responses. The breeding approaches, such as traditional and genomics-assisted strategies, for drought tolerance in wheat are described. Future perspectives are also mentioned. Before wheat genome sequencing, it was very difficult to dissect drought tolerance genomic regions because of large genome size and repetitive sequences. But with the availability of sequencing approaches, a large number of genomic resources has become available which extend the scope of utilization of advanced genomics approaches such as GWAM and GS, MutMap+, etc. A new genome editing approach, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPRassociated protein 9 (Cas9) system, can also be utilized for enhancement of drought tolerance in wheat. Therefore, integration of genomic approaches with precise phenotyping is the need of the hour for improving drought tolerance in wheat.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信