{"title":"带参数的Caputo-Hadamard分数阶微分系统的分岔范式","authors":"Chuntao Yin","doi":"10.1115/detc2021-70870","DOIUrl":null,"url":null,"abstract":"\n This paper focuses on the normal form computation of the pitchfork bifurcation for the Caputo-Hadamard fractional differential system with a parameter. By using Taylor’s expansion and Implicit Function Theorem, we derive the normal form of the pitchfork bifurcation for the Caputo-Hadamard fractional differential system with a parameter.","PeriodicalId":221388,"journal":{"name":"Volume 7: 17th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Normal Form of Bifurcation for Caputo-Hadamard Fractional Differential System With a Parameter\",\"authors\":\"Chuntao Yin\",\"doi\":\"10.1115/detc2021-70870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper focuses on the normal form computation of the pitchfork bifurcation for the Caputo-Hadamard fractional differential system with a parameter. By using Taylor’s expansion and Implicit Function Theorem, we derive the normal form of the pitchfork bifurcation for the Caputo-Hadamard fractional differential system with a parameter.\",\"PeriodicalId\":221388,\"journal\":{\"name\":\"Volume 7: 17th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 7: 17th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2021-70870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7: 17th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2021-70870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Normal Form of Bifurcation for Caputo-Hadamard Fractional Differential System With a Parameter
This paper focuses on the normal form computation of the pitchfork bifurcation for the Caputo-Hadamard fractional differential system with a parameter. By using Taylor’s expansion and Implicit Function Theorem, we derive the normal form of the pitchfork bifurcation for the Caputo-Hadamard fractional differential system with a parameter.