固定多项式大小的电路边界

L. Fortnow, R. Santhanam
{"title":"固定多项式大小的电路边界","authors":"L. Fortnow, R. Santhanam","doi":"10.1109/CCC.2009.21","DOIUrl":null,"url":null,"abstract":"In 1982, Kannan showed that $\\Sigma^\\P_2$ does not have $n^k$-sized circuits for any $k$. Do smaller classes also admit such circuit lower bounds? Despite several improvements of Kannan's result, we still cannot prove that $\\P^\\NP$ does not have linear size circuits. Work of Aaronson and Wigderson provides strong evidence -- the ``algebrization'' barrier -- that current techniques have inherent limitations in this respect. We explore questions about fixed-polynomial size circuit lower bounds around and beyond the algebrization barrier. We find several connections, including \\begin{itemize} \\item The following are equivalent: \\begin{itemize} \\item $\\NP$ is in $\\SIZE(n^k)$ (has $O(n^k)$-size circuit families) for some $k$ \\item For each $c$, $\\P^{\\NP[n^c]}$ is in $\\SIZE(n^k)$ for some $k$ \\item $\\ONP/1$ is in $\\SIZE(n^k)$ for some $k$, where $\\ONP$ is the class of languages accepted {\\it obliviously} by $\\NP$ machines, with witnesses for ``yes'' instances depending only on the input length. \\end{itemize} \\item For a large number of natural classes ${\\cal C}$ and all $k \\geq 1$, ${\\cal C}$ is in $\\SIZE(n^k)$ if and only if ${\\cal C}/1\\cap\\P/\\poly$ is in $\\SIZE(n^k)$. \\item If there is a $d$ such that $\\MATIME(n) \\subseteq \\NTIME(n^d)$, then $\\P^{\\NP}$ does not have $O(n^k)$ size circuits for any $k ≫ 0$. \\item One cannot show $n^2$-size circuit lower bounds for $\\oplus \\P$ without new nonrelativizing techniques. In particular, the proof that $\\PP \\not\\subseteq \\SIZE(n^k)$ for all $k$ relies on the (relativizing) result that $\\P^{\\PP} \\subseteq \\MA \\Longrightarrow \\PP \\not\\subseteq \\SIZE(n^k)$, and we give an oracle relative to which $\\P^{\\oplus \\P} \\subseteq \\MA$ and $\\oplus \\P \\subseteq \\SIZE(n^2)$ both hold. \\end{itemize}","PeriodicalId":158572,"journal":{"name":"2009 24th Annual IEEE Conference on Computational Complexity","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Fixed-Polynomial Size Circuit Bounds\",\"authors\":\"L. Fortnow, R. Santhanam\",\"doi\":\"10.1109/CCC.2009.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1982, Kannan showed that $\\\\Sigma^\\\\P_2$ does not have $n^k$-sized circuits for any $k$. Do smaller classes also admit such circuit lower bounds? Despite several improvements of Kannan's result, we still cannot prove that $\\\\P^\\\\NP$ does not have linear size circuits. Work of Aaronson and Wigderson provides strong evidence -- the ``algebrization'' barrier -- that current techniques have inherent limitations in this respect. We explore questions about fixed-polynomial size circuit lower bounds around and beyond the algebrization barrier. We find several connections, including \\\\begin{itemize} \\\\item The following are equivalent: \\\\begin{itemize} \\\\item $\\\\NP$ is in $\\\\SIZE(n^k)$ (has $O(n^k)$-size circuit families) for some $k$ \\\\item For each $c$, $\\\\P^{\\\\NP[n^c]}$ is in $\\\\SIZE(n^k)$ for some $k$ \\\\item $\\\\ONP/1$ is in $\\\\SIZE(n^k)$ for some $k$, where $\\\\ONP$ is the class of languages accepted {\\\\it obliviously} by $\\\\NP$ machines, with witnesses for ``yes'' instances depending only on the input length. \\\\end{itemize} \\\\item For a large number of natural classes ${\\\\cal C}$ and all $k \\\\geq 1$, ${\\\\cal C}$ is in $\\\\SIZE(n^k)$ if and only if ${\\\\cal C}/1\\\\cap\\\\P/\\\\poly$ is in $\\\\SIZE(n^k)$. \\\\item If there is a $d$ such that $\\\\MATIME(n) \\\\subseteq \\\\NTIME(n^d)$, then $\\\\P^{\\\\NP}$ does not have $O(n^k)$ size circuits for any $k ≫ 0$. \\\\item One cannot show $n^2$-size circuit lower bounds for $\\\\oplus \\\\P$ without new nonrelativizing techniques. In particular, the proof that $\\\\PP \\\\not\\\\subseteq \\\\SIZE(n^k)$ for all $k$ relies on the (relativizing) result that $\\\\P^{\\\\PP} \\\\subseteq \\\\MA \\\\Longrightarrow \\\\PP \\\\not\\\\subseteq \\\\SIZE(n^k)$, and we give an oracle relative to which $\\\\P^{\\\\oplus \\\\P} \\\\subseteq \\\\MA$ and $\\\\oplus \\\\P \\\\subseteq \\\\SIZE(n^2)$ both hold. \\\\end{itemize}\",\"PeriodicalId\":158572,\"journal\":{\"name\":\"2009 24th Annual IEEE Conference on Computational Complexity\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 24th Annual IEEE Conference on Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCC.2009.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 24th Annual IEEE Conference on Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2009.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

1982年,Kannan证明$\Sigma^\P_2$对于任何$k$都没有$n^k$大小的电路。小班也承认这样的电路下限吗?尽管对Kannan的结果进行了几次改进,我们仍然不能证明$\P^\NP$没有线性大小的电路。Aaronson和Wigderson的工作提供了强有力的证据——“代数化”障碍——当前的技术在这方面有固有的局限性。我们探讨了固定多项式大小的电路在代数势垒周围和之外的下界问题。我们发现了一些联系,包括 \begin{itemize} \item 以下是等价的: \begin{itemize} \item $\NP$ 是在$\SIZE(n^k)$(有$O(n^k)$大小的电路家族)为一些 $k$ \item 对于每个$c$,有些人在$\SIZE(n^k)$中找到$\P^{\NP[n^c]}$$k$ \item $\ONP/1$ 对于某些$k$,是在$\SIZE(n^k)$中,其中$\ONP$是{\it}$\NP$机器不受影响地接受的语言类别,“yes”实例的见证仅取决于输入长度。 \end{itemize} \item 对于大量的自然类${\cal C}$和所有的$k \geq 1$,当且仅当${\cal C}/1\cap\P/\poly$在$\SIZE(n^k)$中时,${\cal C}$在$\SIZE(n^k)$中。 \item 如果有一个$d$这样的$\MATIME(n) \subseteq \NTIME(n^d)$,那么$\P^{\NP}$没有任何$k ≫ 0$的$O(n^k)$大小的电路。 \item 如果没有新的非相对化技术,就无法显示$\oplus \P$的$n^2$大小的电路下界。特别地,对于所有$k$的$\PP \not\subseteq \SIZE(n^k)$的证明依赖于$\P^{\PP} \subseteq \MA \Longrightarrow \PP \not\subseteq \SIZE(n^k)$的(相对化)结果,并且我们给出了$\P^{\oplus \P} \subseteq \MA$和$\oplus \P \subseteq \SIZE(n^2)$都持有的一个相对的oracle。 \end{itemize}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fixed-Polynomial Size Circuit Bounds
In 1982, Kannan showed that $\Sigma^\P_2$ does not have $n^k$-sized circuits for any $k$. Do smaller classes also admit such circuit lower bounds? Despite several improvements of Kannan's result, we still cannot prove that $\P^\NP$ does not have linear size circuits. Work of Aaronson and Wigderson provides strong evidence -- the ``algebrization'' barrier -- that current techniques have inherent limitations in this respect. We explore questions about fixed-polynomial size circuit lower bounds around and beyond the algebrization barrier. We find several connections, including \begin{itemize} \item The following are equivalent: \begin{itemize} \item $\NP$ is in $\SIZE(n^k)$ (has $O(n^k)$-size circuit families) for some $k$ \item For each $c$, $\P^{\NP[n^c]}$ is in $\SIZE(n^k)$ for some $k$ \item $\ONP/1$ is in $\SIZE(n^k)$ for some $k$, where $\ONP$ is the class of languages accepted {\it obliviously} by $\NP$ machines, with witnesses for ``yes'' instances depending only on the input length. \end{itemize} \item For a large number of natural classes ${\cal C}$ and all $k \geq 1$, ${\cal C}$ is in $\SIZE(n^k)$ if and only if ${\cal C}/1\cap\P/\poly$ is in $\SIZE(n^k)$. \item If there is a $d$ such that $\MATIME(n) \subseteq \NTIME(n^d)$, then $\P^{\NP}$ does not have $O(n^k)$ size circuits for any $k ≫ 0$. \item One cannot show $n^2$-size circuit lower bounds for $\oplus \P$ without new nonrelativizing techniques. In particular, the proof that $\PP \not\subseteq \SIZE(n^k)$ for all $k$ relies on the (relativizing) result that $\P^{\PP} \subseteq \MA \Longrightarrow \PP \not\subseteq \SIZE(n^k)$, and we give an oracle relative to which $\P^{\oplus \P} \subseteq \MA$ and $\oplus \P \subseteq \SIZE(n^2)$ both hold. \end{itemize}
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信