Alejandro Martín, Félix Fuentes-Hurtado, V. Naranjo, David Camacho
{"title":"基于Android恶意软件分类的进化深度神经网络架构","authors":"Alejandro Martín, Félix Fuentes-Hurtado, V. Naranjo, David Camacho","doi":"10.1109/CEC.2017.7969501","DOIUrl":null,"url":null,"abstract":"Deep Neural Networks (DNN) have become a powerful, widely used, and successful mechanism to solve problems of different nature and varied complexity. Their ability to build models adapted to complex non-linear problems, have made them a technique widely applied and studied. One of the fields where this technique is currently being applied is in the malware classification problem. The malware classification problem has an increasing complexity, due to the growing number of features needed to represent the behaviour of the application as exhaustively as possible. Although other classification methods, as those based on SVM, have been traditionally used, the DNN pose a promising tool in this field. However, the parameters and architecture setting of these DNNs present a serious restriction, due to the necessary time to find the most appropriate configuration. This paper proposes a new genetic algorithm designed to evolve the parameters, and the architecture, of a DNN with the goal of maximising the malware classification accuracy, and minimizing the complexity of the model. This model is tested against a dataset of malware samples, which are represented using a set of static features, so the DNN has been trained to perform a static malware classification task. The experiments carried out using this dataset show that the genetic algorithm is able to select the parameters and the DNN architecture settings, achieving a 91% accuracy.","PeriodicalId":335123,"journal":{"name":"2017 IEEE Congress on Evolutionary Computation (CEC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Evolving Deep Neural Networks architectures for Android malware classification\",\"authors\":\"Alejandro Martín, Félix Fuentes-Hurtado, V. Naranjo, David Camacho\",\"doi\":\"10.1109/CEC.2017.7969501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep Neural Networks (DNN) have become a powerful, widely used, and successful mechanism to solve problems of different nature and varied complexity. Their ability to build models adapted to complex non-linear problems, have made them a technique widely applied and studied. One of the fields where this technique is currently being applied is in the malware classification problem. The malware classification problem has an increasing complexity, due to the growing number of features needed to represent the behaviour of the application as exhaustively as possible. Although other classification methods, as those based on SVM, have been traditionally used, the DNN pose a promising tool in this field. However, the parameters and architecture setting of these DNNs present a serious restriction, due to the necessary time to find the most appropriate configuration. This paper proposes a new genetic algorithm designed to evolve the parameters, and the architecture, of a DNN with the goal of maximising the malware classification accuracy, and minimizing the complexity of the model. This model is tested against a dataset of malware samples, which are represented using a set of static features, so the DNN has been trained to perform a static malware classification task. The experiments carried out using this dataset show that the genetic algorithm is able to select the parameters and the DNN architecture settings, achieving a 91% accuracy.\",\"PeriodicalId\":335123,\"journal\":{\"name\":\"2017 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2017.7969501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2017.7969501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evolving Deep Neural Networks architectures for Android malware classification
Deep Neural Networks (DNN) have become a powerful, widely used, and successful mechanism to solve problems of different nature and varied complexity. Their ability to build models adapted to complex non-linear problems, have made them a technique widely applied and studied. One of the fields where this technique is currently being applied is in the malware classification problem. The malware classification problem has an increasing complexity, due to the growing number of features needed to represent the behaviour of the application as exhaustively as possible. Although other classification methods, as those based on SVM, have been traditionally used, the DNN pose a promising tool in this field. However, the parameters and architecture setting of these DNNs present a serious restriction, due to the necessary time to find the most appropriate configuration. This paper proposes a new genetic algorithm designed to evolve the parameters, and the architecture, of a DNN with the goal of maximising the malware classification accuracy, and minimizing the complexity of the model. This model is tested against a dataset of malware samples, which are represented using a set of static features, so the DNN has been trained to perform a static malware classification task. The experiments carried out using this dataset show that the genetic algorithm is able to select the parameters and the DNN architecture settings, achieving a 91% accuracy.