基于空间区域增长分割和模糊训练的无监督分类

Sanghoon Lee, M. Crawford
{"title":"基于空间区域增长分割和模糊训练的无监督分类","authors":"Sanghoon Lee, M. Crawford","doi":"10.1109/ICIP.2001.959159","DOIUrl":null,"url":null,"abstract":"This study has presented an approach to unsupervisedly estimate the number of classes and the parameters of defining the classes in order to train the classifier. Region growing segmentation and local fuzzy classification have been employed to find the sample classes that well represent the true image. The segmentation algorithm makes use of spatial contextual information in a hierarchical clustering procedure and multi-window operation using a pyramid-like structure to increase the computational efficiency. The fuzzy classification, which conducts classification by iteratively identifying expected maximum likelihood parameters of the class, is applied for the segmented regions in order to determine the sample classes. The maximum likelihood classifier has been used the unlabelled regions to assign them into one of a finite number of classes. The algorithm has been evaluated with simulated image data with various class patterns.","PeriodicalId":291827,"journal":{"name":"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Unsupervised classification using spatial region growing segmentation and fuzzy training\",\"authors\":\"Sanghoon Lee, M. Crawford\",\"doi\":\"10.1109/ICIP.2001.959159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study has presented an approach to unsupervisedly estimate the number of classes and the parameters of defining the classes in order to train the classifier. Region growing segmentation and local fuzzy classification have been employed to find the sample classes that well represent the true image. The segmentation algorithm makes use of spatial contextual information in a hierarchical clustering procedure and multi-window operation using a pyramid-like structure to increase the computational efficiency. The fuzzy classification, which conducts classification by iteratively identifying expected maximum likelihood parameters of the class, is applied for the segmented regions in order to determine the sample classes. The maximum likelihood classifier has been used the unlabelled regions to assign them into one of a finite number of classes. The algorithm has been evaluated with simulated image data with various class patterns.\",\"PeriodicalId\":291827,\"journal\":{\"name\":\"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2001.959159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2001.959159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本研究提出了一种无监督估计类别数量和定义类别参数的方法,以训练分类器。利用区域增长分割和局部模糊分类来寻找能很好地代表真实图像的样本类。该分割算法在分层聚类过程中利用空间上下文信息,并采用金字塔结构的多窗口操作来提高计算效率。对分割的区域进行模糊分类,通过迭代识别类的期望最大似然参数进行分类,从而确定样本类。最大似然分类器使用未标记区域将它们分配到有限数量的类之一。用不同类别模式的模拟图像数据对该算法进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised classification using spatial region growing segmentation and fuzzy training
This study has presented an approach to unsupervisedly estimate the number of classes and the parameters of defining the classes in order to train the classifier. Region growing segmentation and local fuzzy classification have been employed to find the sample classes that well represent the true image. The segmentation algorithm makes use of spatial contextual information in a hierarchical clustering procedure and multi-window operation using a pyramid-like structure to increase the computational efficiency. The fuzzy classification, which conducts classification by iteratively identifying expected maximum likelihood parameters of the class, is applied for the segmented regions in order to determine the sample classes. The maximum likelihood classifier has been used the unlabelled regions to assign them into one of a finite number of classes. The algorithm has been evaluated with simulated image data with various class patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信