Allaparthi Venkata Satya Vithin, J. Ramaiah, Dhruvam Pandey, R. Gannavarpu
{"title":"数字全息干涉测量中基于深度学习的位移导数分析","authors":"Allaparthi Venkata Satya Vithin, J. Ramaiah, Dhruvam Pandey, R. Gannavarpu","doi":"10.1364/dh.2022.w2a.7","DOIUrl":null,"url":null,"abstract":"In this article, we present deep learning approach to estimate displacement derivatives in digital holographic interferometry. The results show the capability of the proposed method on noisy experimental fringes.","PeriodicalId":227456,"journal":{"name":"Digital Holography and 3-D Imaging 2022","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Displacement derivative analysis using deep learning in digital holographic interferometry\",\"authors\":\"Allaparthi Venkata Satya Vithin, J. Ramaiah, Dhruvam Pandey, R. Gannavarpu\",\"doi\":\"10.1364/dh.2022.w2a.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we present deep learning approach to estimate displacement derivatives in digital holographic interferometry. The results show the capability of the proposed method on noisy experimental fringes.\",\"PeriodicalId\":227456,\"journal\":{\"name\":\"Digital Holography and 3-D Imaging 2022\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Holography and 3-D Imaging 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/dh.2022.w2a.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Holography and 3-D Imaging 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/dh.2022.w2a.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Displacement derivative analysis using deep learning in digital holographic interferometry
In this article, we present deep learning approach to estimate displacement derivatives in digital holographic interferometry. The results show the capability of the proposed method on noisy experimental fringes.