基于LSTM网络的缺失数据序列回归

S. O. Sahin
{"title":"基于LSTM网络的缺失数据序列回归","authors":"S. O. Sahin","doi":"10.1109/SIU.2019.8806612","DOIUrl":null,"url":null,"abstract":"We study regression for variable length sequential data suffering from missing samples and introduce a long shortterm memory (LSTM) based sequential regression algorithm. In most sequential regression studies, one considers data sequence is complete, i.e., does not contain any missing data. However, the missing data problem appears in a large number of areas such as finance and medical imaging. The remedies to resolve this problem depends on certain statistical assumptions and imputation techniques. However, the statistical assumptions does not hold in real life and the imputation of artificially generated inputs results in sub-optimal solutions. In our experiments, we achieve significant performance gains with respect to the classical algorithms.","PeriodicalId":326275,"journal":{"name":"2019 27th Signal Processing and Communications Applications Conference (SIU)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sequential Regression with Missing Data Using LSTM Networks\",\"authors\":\"S. O. Sahin\",\"doi\":\"10.1109/SIU.2019.8806612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study regression for variable length sequential data suffering from missing samples and introduce a long shortterm memory (LSTM) based sequential regression algorithm. In most sequential regression studies, one considers data sequence is complete, i.e., does not contain any missing data. However, the missing data problem appears in a large number of areas such as finance and medical imaging. The remedies to resolve this problem depends on certain statistical assumptions and imputation techniques. However, the statistical assumptions does not hold in real life and the imputation of artificially generated inputs results in sub-optimal solutions. In our experiments, we achieve significant performance gains with respect to the classical algorithms.\",\"PeriodicalId\":326275,\"journal\":{\"name\":\"2019 27th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 27th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2019.8806612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 27th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2019.8806612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究了存在样本缺失的变长序列数据的回归问题,提出了一种基于长短期记忆(LSTM)的序列回归算法。在大多数序列回归研究中,人们认为数据序列是完整的,即不包含任何缺失的数据。然而,数据缺失问题出现在金融和医学成像等大量领域。解决这一问题的补救办法取决于某些统计假设和推算技术。然而,统计假设在现实生活中并不成立,人工生成的输入会导致次优解。在我们的实验中,相对于经典算法,我们获得了显著的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sequential Regression with Missing Data Using LSTM Networks
We study regression for variable length sequential data suffering from missing samples and introduce a long shortterm memory (LSTM) based sequential regression algorithm. In most sequential regression studies, one considers data sequence is complete, i.e., does not contain any missing data. However, the missing data problem appears in a large number of areas such as finance and medical imaging. The remedies to resolve this problem depends on certain statistical assumptions and imputation techniques. However, the statistical assumptions does not hold in real life and the imputation of artificially generated inputs results in sub-optimal solutions. In our experiments, we achieve significant performance gains with respect to the classical algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信