基于VO2的谐振超表面强调制吸收和三次谐波的产生

M. Marni, D. Ceglia
{"title":"基于VO2的谐振超表面强调制吸收和三次谐波的产生","authors":"M. Marni, D. Ceglia","doi":"10.5220/0010340000400045","DOIUrl":null,"url":null,"abstract":"Control of linear and nonlinear optical signals is of key importance in a variety of applications, including signal processing, optical computing and energy harvesting, to name just a few. Optical modulation and switching, and more generally tunability in photonic devices, are usually achieved in the visible and nearinfrared range by carrier injection, chemical or mechanical activation, or by deploying materials with large electro-optic or optical nonlinear coefficients. However, these mechanisms are inherently weak and therefore require intense control signals in order to produce significant modulation effects. Here we adopt a nanophotonic solution in which a resonant film of a volatile phase-change material, vanadium dioxide, is inserted between an array of antennas and a metallic backplane. Our design takes advantage of (i) the large refractive-index change of VO2 at its insulator-to-metal transition and (ii) the field enhancements available when the Fabry-Pérot resonance of the film and the plasmonic resonance of the antennas are exited. In response to the VO2 phase transition, not only does our metasurface provide a strong and broadband modulation of linear absorption and reflection but it also shows a drastic variation of third-harmonic generation, with a conversion-efficiency contrast higher than three orders of magnitude.","PeriodicalId":294758,"journal":{"name":"International Conference on Photonics, Optics and Laser Technology","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Strong Modulation of Absorption and Third-Harmonic Generation in Resonant Metasurfaces based on VO2\",\"authors\":\"M. Marni, D. Ceglia\",\"doi\":\"10.5220/0010340000400045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Control of linear and nonlinear optical signals is of key importance in a variety of applications, including signal processing, optical computing and energy harvesting, to name just a few. Optical modulation and switching, and more generally tunability in photonic devices, are usually achieved in the visible and nearinfrared range by carrier injection, chemical or mechanical activation, or by deploying materials with large electro-optic or optical nonlinear coefficients. However, these mechanisms are inherently weak and therefore require intense control signals in order to produce significant modulation effects. Here we adopt a nanophotonic solution in which a resonant film of a volatile phase-change material, vanadium dioxide, is inserted between an array of antennas and a metallic backplane. Our design takes advantage of (i) the large refractive-index change of VO2 at its insulator-to-metal transition and (ii) the field enhancements available when the Fabry-Pérot resonance of the film and the plasmonic resonance of the antennas are exited. In response to the VO2 phase transition, not only does our metasurface provide a strong and broadband modulation of linear absorption and reflection but it also shows a drastic variation of third-harmonic generation, with a conversion-efficiency contrast higher than three orders of magnitude.\",\"PeriodicalId\":294758,\"journal\":{\"name\":\"International Conference on Photonics, Optics and Laser Technology\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Photonics, Optics and Laser Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0010340000400045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Photonics, Optics and Laser Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0010340000400045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

线性和非线性光信号的控制在各种应用中至关重要,包括信号处理,光计算和能量收集,仅举几例。光调制和开关,以及光子器件中更普遍的可调谐性,通常在可见光和近红外范围内通过载流子注入,化学或机械激活,或通过部署具有大电光或光学非线性系数的材料来实现。然而,这些机制本质上是弱的,因此需要强烈的控制信号才能产生显著的调制效果。在这里,我们采用了一种纳米光子溶液,其中一种挥发性相变材料二氧化钒的谐振膜插入到天线阵列和金属背板之间。我们的设计利用了(i)绝缘体到金属过渡时VO2的大折射率变化和(ii)薄膜的法布里-帕姆罗共振和天线的等离子体共振时可用的场增强。作为对VO2相变的响应,我们的超表面不仅提供了强而宽带的线性吸收和反射调制,而且还显示了三次谐波产生的剧烈变化,转换效率对比高于三个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong Modulation of Absorption and Third-Harmonic Generation in Resonant Metasurfaces based on VO2
Control of linear and nonlinear optical signals is of key importance in a variety of applications, including signal processing, optical computing and energy harvesting, to name just a few. Optical modulation and switching, and more generally tunability in photonic devices, are usually achieved in the visible and nearinfrared range by carrier injection, chemical or mechanical activation, or by deploying materials with large electro-optic or optical nonlinear coefficients. However, these mechanisms are inherently weak and therefore require intense control signals in order to produce significant modulation effects. Here we adopt a nanophotonic solution in which a resonant film of a volatile phase-change material, vanadium dioxide, is inserted between an array of antennas and a metallic backplane. Our design takes advantage of (i) the large refractive-index change of VO2 at its insulator-to-metal transition and (ii) the field enhancements available when the Fabry-Pérot resonance of the film and the plasmonic resonance of the antennas are exited. In response to the VO2 phase transition, not only does our metasurface provide a strong and broadband modulation of linear absorption and reflection but it also shows a drastic variation of third-harmonic generation, with a conversion-efficiency contrast higher than three orders of magnitude.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信