超长跨度桥梁空气动力学IABSE TG3.1基准的新挑战

Giorgio Diana, S. Stoyanoff
{"title":"超长跨度桥梁空气动力学IABSE TG3.1基准的新挑战","authors":"Giorgio Diana, S. Stoyanoff","doi":"10.2749/istanbul.2023.0285","DOIUrl":null,"url":null,"abstract":"In the last years, extreme climate events as thunderstorm and downburst are becoming increasingly frequent and widespread. These phenomena could significantly impact on the dynamic response of super long-span bridges since they are typically characterized by a sudden variations of the mean wind speed combined with large vertical angles of attack. This contingency is considered an interesting opportunity for the IABSE Task group 3.1, involved for the last 5 years in the benchmark of the software for the computation of the bridge response to the turbulent wind, to extend the applicability of the consolidated numerical procedures to a case of study characterized by a non-synoptic wind. To reach this purpose, taking as a target the full-scale data measured on the Gjemnessund Bridge during two different incoming wind conditions, a comparison with numerical results is proposed. Specifically, the working group has defined two steps of increasing complexity. The first, given the same input data to the participants, consists of a preliminary numerical benchmark while, the second, concerns the comparison between the outcomes and the dynamic response of the real bridge. In this paper, the results of the wind tunnel tests, performed to measure all the aerodynamic coefficients required for numerically simulating the bridge response, are reported. Finally, the first step is presented and some preliminary outcomes are shown.","PeriodicalId":237396,"journal":{"name":"IABSE Symposium, Istanbul 2023: Long Span Bridges","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New challenges in the IABSE TG3.1 benchmark on super long span bridge aerodynamics\",\"authors\":\"Giorgio Diana, S. Stoyanoff\",\"doi\":\"10.2749/istanbul.2023.0285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last years, extreme climate events as thunderstorm and downburst are becoming increasingly frequent and widespread. These phenomena could significantly impact on the dynamic response of super long-span bridges since they are typically characterized by a sudden variations of the mean wind speed combined with large vertical angles of attack. This contingency is considered an interesting opportunity for the IABSE Task group 3.1, involved for the last 5 years in the benchmark of the software for the computation of the bridge response to the turbulent wind, to extend the applicability of the consolidated numerical procedures to a case of study characterized by a non-synoptic wind. To reach this purpose, taking as a target the full-scale data measured on the Gjemnessund Bridge during two different incoming wind conditions, a comparison with numerical results is proposed. Specifically, the working group has defined two steps of increasing complexity. The first, given the same input data to the participants, consists of a preliminary numerical benchmark while, the second, concerns the comparison between the outcomes and the dynamic response of the real bridge. In this paper, the results of the wind tunnel tests, performed to measure all the aerodynamic coefficients required for numerically simulating the bridge response, are reported. Finally, the first step is presented and some preliminary outcomes are shown.\",\"PeriodicalId\":237396,\"journal\":{\"name\":\"IABSE Symposium, Istanbul 2023: Long Span Bridges\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IABSE Symposium, Istanbul 2023: Long Span Bridges\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2749/istanbul.2023.0285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IABSE Symposium, Istanbul 2023: Long Span Bridges","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2749/istanbul.2023.0285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几年里,雷暴和暴雨等极端气候事件变得越来越频繁和广泛。这些现象对超长跨度桥梁的动力响应有显著的影响,因为超长跨度桥梁的典型特征是平均风速的突然变化和大的垂直攻角。这种偶然性被认为是IABSE任务组3.1的一个有趣的机会,在过去的5年里,他们参与了计算桥梁对湍流风响应的软件基准,将综合数值程序的适用性扩展到以非天气风为特征的研究案例。为达到这一目的,本文以两种不同来风条件下在Gjemnessund大桥上实测的全尺寸数据为目标,与数值结果进行了比较。具体来说,工作组定义了增加复杂性的两个步骤。第一个是给参与者提供相同的输入数据,包括一个初步的数值基准,而第二个是将结果与真实桥梁的动态响应进行比较。本文报道了为测量数值模拟桥梁响应所需的所有气动系数而进行的风洞试验的结果。最后,给出了第一步,并给出了一些初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New challenges in the IABSE TG3.1 benchmark on super long span bridge aerodynamics
In the last years, extreme climate events as thunderstorm and downburst are becoming increasingly frequent and widespread. These phenomena could significantly impact on the dynamic response of super long-span bridges since they are typically characterized by a sudden variations of the mean wind speed combined with large vertical angles of attack. This contingency is considered an interesting opportunity for the IABSE Task group 3.1, involved for the last 5 years in the benchmark of the software for the computation of the bridge response to the turbulent wind, to extend the applicability of the consolidated numerical procedures to a case of study characterized by a non-synoptic wind. To reach this purpose, taking as a target the full-scale data measured on the Gjemnessund Bridge during two different incoming wind conditions, a comparison with numerical results is proposed. Specifically, the working group has defined two steps of increasing complexity. The first, given the same input data to the participants, consists of a preliminary numerical benchmark while, the second, concerns the comparison between the outcomes and the dynamic response of the real bridge. In this paper, the results of the wind tunnel tests, performed to measure all the aerodynamic coefficients required for numerically simulating the bridge response, are reported. Finally, the first step is presented and some preliminary outcomes are shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信