多智能体形成的进化动力学

Jinjing Qin, X. Ban, Xin Li
{"title":"多智能体形成的进化动力学","authors":"Jinjing Qin, X. Ban, Xin Li","doi":"10.1109/CCDC.2009.5192601","DOIUrl":null,"url":null,"abstract":"To probe into the internal mechanism of multi-agent formation, game theory is used to model the interaction between agents and Win-Stay-Lose-Shift strategy to instruct agents' action. Equations are introduced to formulate how agents update their positions. The Win-Stay-Lose-Shift strategy along with the update equations depicts the dynamics of multi-agent formation. And simulations are designed and performed to observe the development of multi-agent formation. The results of simulation show the feasibility of the idea in this paper.","PeriodicalId":127110,"journal":{"name":"2009 Chinese Control and Decision Conference","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evolutionary dynamics of multi-agent formation\",\"authors\":\"Jinjing Qin, X. Ban, Xin Li\",\"doi\":\"10.1109/CCDC.2009.5192601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To probe into the internal mechanism of multi-agent formation, game theory is used to model the interaction between agents and Win-Stay-Lose-Shift strategy to instruct agents' action. Equations are introduced to formulate how agents update their positions. The Win-Stay-Lose-Shift strategy along with the update equations depicts the dynamics of multi-agent formation. And simulations are designed and performed to observe the development of multi-agent formation. The results of simulation show the feasibility of the idea in this paper.\",\"PeriodicalId\":127110,\"journal\":{\"name\":\"2009 Chinese Control and Decision Conference\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Chinese Control and Decision Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCDC.2009.5192601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Chinese Control and Decision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2009.5192601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了探究多智能体形成的内在机制,利用博弈论对智能体之间的相互作用进行建模,并运用“赢-留-输-换”策略指导智能体的行为。引入方程来描述agent如何更新它们的位置。Win-Stay-Lose-Shift策略和更新方程描述了多智能体形成的动力学。设计并进行了仿真,以观察多智能体编队的发展情况。仿真结果表明了本文思想的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolutionary dynamics of multi-agent formation
To probe into the internal mechanism of multi-agent formation, game theory is used to model the interaction between agents and Win-Stay-Lose-Shift strategy to instruct agents' action. Equations are introduced to formulate how agents update their positions. The Win-Stay-Lose-Shift strategy along with the update equations depicts the dynamics of multi-agent formation. And simulations are designed and performed to observe the development of multi-agent formation. The results of simulation show the feasibility of the idea in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信