机器人视觉的二维物体建模

J. Orrock, R. Jacobson, J. Krumm, H. Hashimukai
{"title":"机器人视觉的二维物体建模","authors":"J. Orrock, R. Jacobson, J. Krumm, H. Hashimukai","doi":"10.1109/AIIA.1988.13327","DOIUrl":null,"url":null,"abstract":"The authors define modeling requirements for robotic vision, describe previous work in developing models, and discuss how models are used in vision processing. They describe how Honeywell research results improve on previous manual techniques by using heuristic model feature selection and reduce the need for train-by-showing images by substituting synthetic imagery. Particular, attention is given to efforts to construct an automated modeling system which develops 2-D part recognition models without the use of the online vision system and which requires only minimal operator expertise. The focus has been on two key components of this automated model building system; automated feature selection and ranking, and synthetic image generation. The value of these advances is discussed, along with an assessment of future research needs.<<ETX>>","PeriodicalId":112397,"journal":{"name":"Proceedings of the International Workshop on Artificial Intelligence for Industrial Applications","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Two-dimensional object modelling for robotic vision\",\"authors\":\"J. Orrock, R. Jacobson, J. Krumm, H. Hashimukai\",\"doi\":\"10.1109/AIIA.1988.13327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors define modeling requirements for robotic vision, describe previous work in developing models, and discuss how models are used in vision processing. They describe how Honeywell research results improve on previous manual techniques by using heuristic model feature selection and reduce the need for train-by-showing images by substituting synthetic imagery. Particular, attention is given to efforts to construct an automated modeling system which develops 2-D part recognition models without the use of the online vision system and which requires only minimal operator expertise. The focus has been on two key components of this automated model building system; automated feature selection and ranking, and synthetic image generation. The value of these advances is discussed, along with an assessment of future research needs.<<ETX>>\",\"PeriodicalId\":112397,\"journal\":{\"name\":\"Proceedings of the International Workshop on Artificial Intelligence for Industrial Applications\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Workshop on Artificial Intelligence for Industrial Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIIA.1988.13327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Workshop on Artificial Intelligence for Industrial Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIIA.1988.13327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

作者定义了机器人视觉的建模要求,描述了以前在开发模型方面的工作,并讨论了如何在视觉处理中使用模型。他们描述了霍尼韦尔的研究成果如何通过使用启发式模型特征选择来改进以前的手动技术,并通过替换合成图像来减少对显示图像训练的需求。特别要注意的是构建一个自动化建模系统,该系统可以在不使用在线视觉系统的情况下开发2-D零件识别模型,并且只需要最少的操作人员专业知识。重点是这个自动化模型构建系统的两个关键组件;自动特征选择和排序,以及合成图像生成。讨论了这些进展的价值,并对未来的研究需求进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-dimensional object modelling for robotic vision
The authors define modeling requirements for robotic vision, describe previous work in developing models, and discuss how models are used in vision processing. They describe how Honeywell research results improve on previous manual techniques by using heuristic model feature selection and reduce the need for train-by-showing images by substituting synthetic imagery. Particular, attention is given to efforts to construct an automated modeling system which develops 2-D part recognition models without the use of the online vision system and which requires only minimal operator expertise. The focus has been on two key components of this automated model building system; automated feature selection and ranking, and synthetic image generation. The value of these advances is discussed, along with an assessment of future research needs.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信