{"title":"供人类饮用的净水","authors":"Sumanth R Moole","doi":"10.1109/ISEC52395.2021.9764038","DOIUrl":null,"url":null,"abstract":"This project is to research, propose, and test the alternatives to the current water purification methods. Two most important objectives are to reduce the cost and make the solution available to the people with minimal infrastructure. Problem Description: Water is critical for life. Even though two thirds of the earth surface is covered with water, not all of it is suitable for human consumption. United Nations statistics show that 1.2 billion people, or almost one in every five, have water scarcity now and another 1.6 billion people do not have sufficient infrastructure to use the water available to them in rivers and aquifers (https://www.un.org/waterforlifedecade/scarcity.shtml). Water extracted from rivers, lakes, and aquifers is not suitable for human consumption in most cases without purification. Water purification is expensive and difficult process which requires chemicals like Aluminum Sulfate. These chemicals interact with suspended solid particles in the water in a process called flocculation, which creates heavy particles that sink to the bottom. After flocculation, the clear water is further purified with Chlorine or other anti-microbial chemicals. These chemicals are produced in expensive factories and require transportation over long distances to reach the intended population. The infrastructure required to collect, purify, and distribute the water is very expensive and requires large capital investment for long term. These high costs and requirement of capital investments are further complicated in politically unstable regions of the world. In view of this background, there is a need to find innovative solutions to the water purification to reduce costs, capital investment, and bring the solutions to the needy people. Research, proposed solution, and results: This research was focused on how different civilizations in the past dealt with the water purification problem, especially when there were no chemicals, factories, and water supply infrastructure. Through this research of literature, one water purification method used by the Indian farmers since ancient times to purify the water available in the ponds they dug to collect the rain water in each field was selected for testing. The rain water collected in those ponds was contaminated by wild life excrements, mud, algae, etc. and was not suitable for human consumption. The farmers made thin pads from dry straw available in the fields and used them as covers for the pot openings. When the pots are dipped into the pond water, these pads filtered out the large contaminants like algae, fecal matter, and heavy mud. Then these pots of water are taken out, mixed with the powder of Moringa Oleifera (drumstick) seeds, let them settle for about 30 minutes or so depending on the size of the pot. The Moringa Oleifera causes flocculation. In addition, the Moringa Oleifera seems to have anti-microbial properties that kill organic contaminants as well. This project tested the effectiveness of Moringa Oleifera as a flocculant. The results proved that the Moringa Oleifera is as effective as the Aluminum Sulfate. This solution is small scale, easily implementable in remote locations, and cheaper.","PeriodicalId":329844,"journal":{"name":"2021 IEEE Integrated STEM Education Conference (ISEC)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Water Purification for Human Consumption\",\"authors\":\"Sumanth R Moole\",\"doi\":\"10.1109/ISEC52395.2021.9764038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This project is to research, propose, and test the alternatives to the current water purification methods. Two most important objectives are to reduce the cost and make the solution available to the people with minimal infrastructure. Problem Description: Water is critical for life. Even though two thirds of the earth surface is covered with water, not all of it is suitable for human consumption. United Nations statistics show that 1.2 billion people, or almost one in every five, have water scarcity now and another 1.6 billion people do not have sufficient infrastructure to use the water available to them in rivers and aquifers (https://www.un.org/waterforlifedecade/scarcity.shtml). Water extracted from rivers, lakes, and aquifers is not suitable for human consumption in most cases without purification. Water purification is expensive and difficult process which requires chemicals like Aluminum Sulfate. These chemicals interact with suspended solid particles in the water in a process called flocculation, which creates heavy particles that sink to the bottom. After flocculation, the clear water is further purified with Chlorine or other anti-microbial chemicals. These chemicals are produced in expensive factories and require transportation over long distances to reach the intended population. The infrastructure required to collect, purify, and distribute the water is very expensive and requires large capital investment for long term. These high costs and requirement of capital investments are further complicated in politically unstable regions of the world. In view of this background, there is a need to find innovative solutions to the water purification to reduce costs, capital investment, and bring the solutions to the needy people. Research, proposed solution, and results: This research was focused on how different civilizations in the past dealt with the water purification problem, especially when there were no chemicals, factories, and water supply infrastructure. Through this research of literature, one water purification method used by the Indian farmers since ancient times to purify the water available in the ponds they dug to collect the rain water in each field was selected for testing. The rain water collected in those ponds was contaminated by wild life excrements, mud, algae, etc. and was not suitable for human consumption. The farmers made thin pads from dry straw available in the fields and used them as covers for the pot openings. When the pots are dipped into the pond water, these pads filtered out the large contaminants like algae, fecal matter, and heavy mud. Then these pots of water are taken out, mixed with the powder of Moringa Oleifera (drumstick) seeds, let them settle for about 30 minutes or so depending on the size of the pot. The Moringa Oleifera causes flocculation. In addition, the Moringa Oleifera seems to have anti-microbial properties that kill organic contaminants as well. This project tested the effectiveness of Moringa Oleifera as a flocculant. The results proved that the Moringa Oleifera is as effective as the Aluminum Sulfate. This solution is small scale, easily implementable in remote locations, and cheaper.\",\"PeriodicalId\":329844,\"journal\":{\"name\":\"2021 IEEE Integrated STEM Education Conference (ISEC)\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Integrated STEM Education Conference (ISEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISEC52395.2021.9764038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Integrated STEM Education Conference (ISEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEC52395.2021.9764038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This project is to research, propose, and test the alternatives to the current water purification methods. Two most important objectives are to reduce the cost and make the solution available to the people with minimal infrastructure. Problem Description: Water is critical for life. Even though two thirds of the earth surface is covered with water, not all of it is suitable for human consumption. United Nations statistics show that 1.2 billion people, or almost one in every five, have water scarcity now and another 1.6 billion people do not have sufficient infrastructure to use the water available to them in rivers and aquifers (https://www.un.org/waterforlifedecade/scarcity.shtml). Water extracted from rivers, lakes, and aquifers is not suitable for human consumption in most cases without purification. Water purification is expensive and difficult process which requires chemicals like Aluminum Sulfate. These chemicals interact with suspended solid particles in the water in a process called flocculation, which creates heavy particles that sink to the bottom. After flocculation, the clear water is further purified with Chlorine or other anti-microbial chemicals. These chemicals are produced in expensive factories and require transportation over long distances to reach the intended population. The infrastructure required to collect, purify, and distribute the water is very expensive and requires large capital investment for long term. These high costs and requirement of capital investments are further complicated in politically unstable regions of the world. In view of this background, there is a need to find innovative solutions to the water purification to reduce costs, capital investment, and bring the solutions to the needy people. Research, proposed solution, and results: This research was focused on how different civilizations in the past dealt with the water purification problem, especially when there were no chemicals, factories, and water supply infrastructure. Through this research of literature, one water purification method used by the Indian farmers since ancient times to purify the water available in the ponds they dug to collect the rain water in each field was selected for testing. The rain water collected in those ponds was contaminated by wild life excrements, mud, algae, etc. and was not suitable for human consumption. The farmers made thin pads from dry straw available in the fields and used them as covers for the pot openings. When the pots are dipped into the pond water, these pads filtered out the large contaminants like algae, fecal matter, and heavy mud. Then these pots of water are taken out, mixed with the powder of Moringa Oleifera (drumstick) seeds, let them settle for about 30 minutes or so depending on the size of the pot. The Moringa Oleifera causes flocculation. In addition, the Moringa Oleifera seems to have anti-microbial properties that kill organic contaminants as well. This project tested the effectiveness of Moringa Oleifera as a flocculant. The results proved that the Moringa Oleifera is as effective as the Aluminum Sulfate. This solution is small scale, easily implementable in remote locations, and cheaper.