myollearn:使用多模态臂带传感器进行职业安全问题识别

Dylan Ebert, F. Makedon
{"title":"myollearn:使用多模态臂带传感器进行职业安全问题识别","authors":"Dylan Ebert, F. Makedon","doi":"10.1145/3056540.3076212","DOIUrl":null,"url":null,"abstract":"This project looks at using the Myo armband and machine learning techniques to detect irregularities when performing a vocational assembly task. A Lego car assembly task is performed while Myo data are collected, which include accelerometer, gyroscope, magnetometer, and EMG. Principal Component Analysis is then used to reduce dimensionality and discover if long-term deviations from the assembly task can be detected, indicating a potential health and safety risk.","PeriodicalId":140232,"journal":{"name":"Proceedings of the 10th International Conference on PErvasive Technologies Related to Assistive Environments","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"MyoLearn: Using a multimodal armband sensor for vocational safety problem identification\",\"authors\":\"Dylan Ebert, F. Makedon\",\"doi\":\"10.1145/3056540.3076212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This project looks at using the Myo armband and machine learning techniques to detect irregularities when performing a vocational assembly task. A Lego car assembly task is performed while Myo data are collected, which include accelerometer, gyroscope, magnetometer, and EMG. Principal Component Analysis is then used to reduce dimensionality and discover if long-term deviations from the assembly task can be detected, indicating a potential health and safety risk.\",\"PeriodicalId\":140232,\"journal\":{\"name\":\"Proceedings of the 10th International Conference on PErvasive Technologies Related to Assistive Environments\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th International Conference on PErvasive Technologies Related to Assistive Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3056540.3076212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th International Conference on PErvasive Technologies Related to Assistive Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3056540.3076212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

该项目着眼于使用Myo臂带和机器学习技术来检测执行职业装配任务时的不规则性。在收集Myo数据(包括加速度计、陀螺仪、磁力计和肌电图)的同时,执行乐高汽车组装任务。然后使用主成分分析来降低维数,并发现是否可以检测到与装配任务的长期偏差,表明存在潜在的健康和安全风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MyoLearn: Using a multimodal armband sensor for vocational safety problem identification
This project looks at using the Myo armband and machine learning techniques to detect irregularities when performing a vocational assembly task. A Lego car assembly task is performed while Myo data are collected, which include accelerometer, gyroscope, magnetometer, and EMG. Principal Component Analysis is then used to reduce dimensionality and discover if long-term deviations from the assembly task can be detected, indicating a potential health and safety risk.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信