不连接下多方通信复杂度的简化下界

Anup Rao, A. Yehudayoff
{"title":"不连接下多方通信复杂度的简化下界","authors":"Anup Rao, A. Yehudayoff","doi":"10.4230/LIPIcs.CCC.2015.88","DOIUrl":null,"url":null,"abstract":"We show that the deterministic number-on-forehead communication complexity of set disjointness for k parties on a universe of size n is Ω(n/ 4k). This gives the first lower bound that is linear in n, nearly matching Grolmusz's upper bound of O(log2(n) + k2n/2k). We also simplify the proof of Sherstov's [EQUATION] lower bound for the randomized communication complexity of set disjointness.","PeriodicalId":246506,"journal":{"name":"Cybersecurity and Cyberforensics Conference","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Simplified Lower Bounds on the Multiparty Communication Complexity of Disjointness\",\"authors\":\"Anup Rao, A. Yehudayoff\",\"doi\":\"10.4230/LIPIcs.CCC.2015.88\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the deterministic number-on-forehead communication complexity of set disjointness for k parties on a universe of size n is Ω(n/ 4k). This gives the first lower bound that is linear in n, nearly matching Grolmusz's upper bound of O(log2(n) + k2n/2k). We also simplify the proof of Sherstov's [EQUATION] lower bound for the randomized communication complexity of set disjointness.\",\"PeriodicalId\":246506,\"journal\":{\"name\":\"Cybersecurity and Cyberforensics Conference\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybersecurity and Cyberforensics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.CCC.2015.88\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybersecurity and Cyberforensics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CCC.2015.88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

我们证明了在大小为n的全域上k方集合不连接的确定性数额通信复杂度为Ω(n/ 4k)。这给出了第一个对n线性的下界,几乎与Grolmusz的上界O(log2(n) + k2n/2k)相匹配。我们还简化了集不相交随机通信复杂度的Sherstov下界的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simplified Lower Bounds on the Multiparty Communication Complexity of Disjointness
We show that the deterministic number-on-forehead communication complexity of set disjointness for k parties on a universe of size n is Ω(n/ 4k). This gives the first lower bound that is linear in n, nearly matching Grolmusz's upper bound of O(log2(n) + k2n/2k). We also simplify the proof of Sherstov's [EQUATION] lower bound for the randomized communication complexity of set disjointness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信