{"title":"柔性加权神经模糊系统","authors":"L. Rutkowski, K. Cpałka","doi":"10.1109/ICONIP.2002.1198995","DOIUrl":null,"url":null,"abstract":"In the paper we study new neuro-fuzzy systems. They are called the OR-type fuzzy inference systems (NFIS). Based on the input-output data we learn not only parameters of membership functions but also a type of the systems and aggregating parameters. We propose the weighted T-norm and S-norm to neuro-fuzzy inference systems. Our approach introduces more flexibility to the structure and learning of neuro-fuzzy systems.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Flexible weighted neuro-fuzzy systems\",\"authors\":\"L. Rutkowski, K. Cpałka\",\"doi\":\"10.1109/ICONIP.2002.1198995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper we study new neuro-fuzzy systems. They are called the OR-type fuzzy inference systems (NFIS). Based on the input-output data we learn not only parameters of membership functions but also a type of the systems and aggregating parameters. We propose the weighted T-norm and S-norm to neuro-fuzzy inference systems. Our approach introduces more flexibility to the structure and learning of neuro-fuzzy systems.\",\"PeriodicalId\":146553,\"journal\":{\"name\":\"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICONIP.2002.1198995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1198995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In the paper we study new neuro-fuzzy systems. They are called the OR-type fuzzy inference systems (NFIS). Based on the input-output data we learn not only parameters of membership functions but also a type of the systems and aggregating parameters. We propose the weighted T-norm and S-norm to neuro-fuzzy inference systems. Our approach introduces more flexibility to the structure and learning of neuro-fuzzy systems.