交通时空预测的多任务同步图神经网络

He Li, D. Jin, Xuejiao Li, Jianbin Huang, Jaesoo Yoo
{"title":"交通时空预测的多任务同步图神经网络","authors":"He Li, D. Jin, Xuejiao Li, Jianbin Huang, Jaesoo Yoo","doi":"10.1145/3474717.3483921","DOIUrl":null,"url":null,"abstract":"Traffic spatial-temporal prediction is of great significance to traffic management and urban construction. In this paper, we propose a multi-task graph Synchronous neural network (MTSGNN) to synchronously predict the spatial-temporal data at the regions and transitions between regions. The method of constructing \"multitask graph representation\" is proposed to retain the information of regions and transitions that existing works can not reflect. Then our model synchronously captures multiple types of dynamic spatial correlations, models dynamic temporal dependencies and re-weights different time steps to solve the problem of long-term time modeling. In three real data sets, we verify the validity of the proposed model.","PeriodicalId":340759,"journal":{"name":"Proceedings of the 29th International Conference on Advances in Geographic Information Systems","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multi-Task Synchronous Graph Neural Networks for Traffic Spatial-Temporal Prediction\",\"authors\":\"He Li, D. Jin, Xuejiao Li, Jianbin Huang, Jaesoo Yoo\",\"doi\":\"10.1145/3474717.3483921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic spatial-temporal prediction is of great significance to traffic management and urban construction. In this paper, we propose a multi-task graph Synchronous neural network (MTSGNN) to synchronously predict the spatial-temporal data at the regions and transitions between regions. The method of constructing \\\"multitask graph representation\\\" is proposed to retain the information of regions and transitions that existing works can not reflect. Then our model synchronously captures multiple types of dynamic spatial correlations, models dynamic temporal dependencies and re-weights different time steps to solve the problem of long-term time modeling. In three real data sets, we verify the validity of the proposed model.\",\"PeriodicalId\":340759,\"journal\":{\"name\":\"Proceedings of the 29th International Conference on Advances in Geographic Information Systems\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3474717.3483921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3474717.3483921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

交通时空预测对交通管理和城市建设具有重要意义。在本文中,我们提出了一种多任务图同步神经网络(MTSGNN)来同步预测区域和区域间转换的时空数据。提出了构建“多任务图表示”的方法,以保留现有作品无法反映的区域和过渡信息。然后,我们的模型同步捕获多种类型的动态空间相关性,建模动态时间依赖性,并重新加权不同的时间步长,以解决长期时间建模问题。在三个实际数据集中,我们验证了所提出模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Task Synchronous Graph Neural Networks for Traffic Spatial-Temporal Prediction
Traffic spatial-temporal prediction is of great significance to traffic management and urban construction. In this paper, we propose a multi-task graph Synchronous neural network (MTSGNN) to synchronously predict the spatial-temporal data at the regions and transitions between regions. The method of constructing "multitask graph representation" is proposed to retain the information of regions and transitions that existing works can not reflect. Then our model synchronously captures multiple types of dynamic spatial correlations, models dynamic temporal dependencies and re-weights different time steps to solve the problem of long-term time modeling. In three real data sets, we verify the validity of the proposed model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信