如何证明一个集合不是代数的

C. McCrory
{"title":"如何证明一个集合不是代数的","authors":"C. McCrory","doi":"10.1090/dimacs/060/07","DOIUrl":null,"url":null,"abstract":"We revisit Akbulut and King's first example of a compact semialgebraic set which satisfies Sullivan's local Euler characteristic condition, but which is not homeomorphic to an algebraic set. A nontrivial obstruction is computed using the link operator on the ring of constructible functions.","PeriodicalId":363327,"journal":{"name":"Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"How to Show a Set is not Algebraic\",\"authors\":\"C. McCrory\",\"doi\":\"10.1090/dimacs/060/07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We revisit Akbulut and King's first example of a compact semialgebraic set which satisfies Sullivan's local Euler characteristic condition, but which is not homeomorphic to an algebraic set. A nontrivial obstruction is computed using the link operator on the ring of constructible functions.\",\"PeriodicalId\":363327,\"journal\":{\"name\":\"Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/dimacs/060/07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/dimacs/060/07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们回顾了Akbulut和King的第一个紧半代数集的例子,它满足Sullivan的局部欧拉特征条件,但它不是代数集的同胚。利用可构造函数环上的链接算子计算非平凡障碍物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How to Show a Set is not Algebraic
We revisit Akbulut and King's first example of a compact semialgebraic set which satisfies Sullivan's local Euler characteristic condition, but which is not homeomorphic to an algebraic set. A nontrivial obstruction is computed using the link operator on the ring of constructible functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信