基于像素的语义视频分割故障预测

Christopher B. Kuhn, M. Hofbauer, Ziqi Xu, G. Petrovic, E. Steinbach
{"title":"基于像素的语义视频分割故障预测","authors":"Christopher B. Kuhn, M. Hofbauer, Ziqi Xu, G. Petrovic, E. Steinbach","doi":"10.1109/ICIP42928.2021.9506552","DOIUrl":null,"url":null,"abstract":"We propose a pixel-accurate failure prediction approach for semantic video segmentation. The proposed scheme improves previously proposed failure prediction methods which so far disregarded the temporal information in videos. Our approach consists of two main steps: First, we train an LSTM-based model to detect spatio-temporal patterns that indicate pixel-wise misclassifications in the current video frame. Second, we use sequences of failure predictions to train a denoising autoencoder that both refines the current failure prediction and predicts future misclassifications. Since public data sets for this scenario are limited, we introduce the large-scale densely annotated video driving (DAVID) data set generated using the CARLA simulator. We evaluate our approach on the real-world Cityscapes data set and the simulator-based DAVID data set. Our experimental results show that spatiotemporal failure prediction outperforms single-image failure prediction by up to 8.8%. Refining the prediction using a sequence of previous failure predictions further improves the performance by a significant 15.2% and allows to accurately predict misclassifications for future frames. While we focus our study on driving videos, the proposed approach is general and can be easily used in other scenarios as well.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Pixel-Wise Failure Prediction For Semantic Video Segmentation\",\"authors\":\"Christopher B. Kuhn, M. Hofbauer, Ziqi Xu, G. Petrovic, E. Steinbach\",\"doi\":\"10.1109/ICIP42928.2021.9506552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a pixel-accurate failure prediction approach for semantic video segmentation. The proposed scheme improves previously proposed failure prediction methods which so far disregarded the temporal information in videos. Our approach consists of two main steps: First, we train an LSTM-based model to detect spatio-temporal patterns that indicate pixel-wise misclassifications in the current video frame. Second, we use sequences of failure predictions to train a denoising autoencoder that both refines the current failure prediction and predicts future misclassifications. Since public data sets for this scenario are limited, we introduce the large-scale densely annotated video driving (DAVID) data set generated using the CARLA simulator. We evaluate our approach on the real-world Cityscapes data set and the simulator-based DAVID data set. Our experimental results show that spatiotemporal failure prediction outperforms single-image failure prediction by up to 8.8%. Refining the prediction using a sequence of previous failure predictions further improves the performance by a significant 15.2% and allows to accurately predict misclassifications for future frames. While we focus our study on driving videos, the proposed approach is general and can be easily used in other scenarios as well.\",\"PeriodicalId\":314429,\"journal\":{\"name\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP42928.2021.9506552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

提出了一种用于语义视频分割的像素精度故障预测方法。该方法改进了先前提出的不考虑视频时间信息的故障预测方法。我们的方法包括两个主要步骤:首先,我们训练一个基于lstm的模型来检测当前视频帧中显示像素错误分类的时空模式。其次,我们使用故障预测序列来训练去噪自编码器,该编码器既可以改进当前的故障预测,又可以预测未来的错误分类。由于该场景的公共数据集有限,我们引入了使用CARLA模拟器生成的大规模密集注释视频驾驶(DAVID)数据集。我们在真实世界的城市景观数据集和基于模拟器的DAVID数据集上评估了我们的方法。我们的实验结果表明,时空故障预测比单图像故障预测高出8.8%。使用先前的故障预测序列来改进预测,进一步提高了15.2%的性能,并允许准确预测未来帧的错误分类。虽然我们的研究重点是驾驶视频,但所提出的方法是通用的,也可以很容易地用于其他场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pixel-Wise Failure Prediction For Semantic Video Segmentation
We propose a pixel-accurate failure prediction approach for semantic video segmentation. The proposed scheme improves previously proposed failure prediction methods which so far disregarded the temporal information in videos. Our approach consists of two main steps: First, we train an LSTM-based model to detect spatio-temporal patterns that indicate pixel-wise misclassifications in the current video frame. Second, we use sequences of failure predictions to train a denoising autoencoder that both refines the current failure prediction and predicts future misclassifications. Since public data sets for this scenario are limited, we introduce the large-scale densely annotated video driving (DAVID) data set generated using the CARLA simulator. We evaluate our approach on the real-world Cityscapes data set and the simulator-based DAVID data set. Our experimental results show that spatiotemporal failure prediction outperforms single-image failure prediction by up to 8.8%. Refining the prediction using a sequence of previous failure predictions further improves the performance by a significant 15.2% and allows to accurately predict misclassifications for future frames. While we focus our study on driving videos, the proposed approach is general and can be easily used in other scenarios as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信