基于集成学习方法的巴尔干地区能源消费分类

Radmila Janković, Alessia Amelio, Zulfiqar Ali Ranjha
{"title":"基于集成学习方法的巴尔干地区能源消费分类","authors":"Radmila Janković, Alessia Amelio, Zulfiqar Ali Ranjha","doi":"10.23919/ICACS.2019.8689000","DOIUrl":null,"url":null,"abstract":"This paper explores the use of ensemble learning methods for classifying the energy consumption from (i) gross domestic product, (ii) CO2 emissions, and (iii) total number of population. The proposed analysis extends the previous research where prediction of the energy consumption values was performed using regression strategies. The experiment involves energy use data from five different Balkan countries, which is collected in the period 1995-2014. The energy consumption classes are obtained from the energy use values by K-Medians and analysed. Then, multiclass ensembles of support vector machine and linear discriminant analysis are used for classification of the energy consumption given the gross domestic product, the CO2 emissions, and the total number of population. The classification task is compared with a traditional multiclass support vector machine approach. The obtained results are very promising.","PeriodicalId":290819,"journal":{"name":"2019 2nd International Conference on Advancements in Computational Sciences (ICACS)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Classification of Energy Consumption in the Balkans using Ensemble Learning Methods\",\"authors\":\"Radmila Janković, Alessia Amelio, Zulfiqar Ali Ranjha\",\"doi\":\"10.23919/ICACS.2019.8689000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the use of ensemble learning methods for classifying the energy consumption from (i) gross domestic product, (ii) CO2 emissions, and (iii) total number of population. The proposed analysis extends the previous research where prediction of the energy consumption values was performed using regression strategies. The experiment involves energy use data from five different Balkan countries, which is collected in the period 1995-2014. The energy consumption classes are obtained from the energy use values by K-Medians and analysed. Then, multiclass ensembles of support vector machine and linear discriminant analysis are used for classification of the energy consumption given the gross domestic product, the CO2 emissions, and the total number of population. The classification task is compared with a traditional multiclass support vector machine approach. The obtained results are very promising.\",\"PeriodicalId\":290819,\"journal\":{\"name\":\"2019 2nd International Conference on Advancements in Computational Sciences (ICACS)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 2nd International Conference on Advancements in Computational Sciences (ICACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICACS.2019.8689000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd International Conference on Advancements in Computational Sciences (ICACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICACS.2019.8689000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文探讨了使用集成学习方法从(i)国内生产总值(gdp)、(ii)二氧化碳排放量和(iii)人口总数中对能源消耗进行分类。提出的分析扩展了先前的研究,其中使用回归策略进行能源消耗值的预测。该实验涉及1995年至2014年期间收集的五个不同巴尔干国家的能源使用数据。通过k -中位数从能源使用值中获得能源消耗类别并进行分析。然后,基于国内生产总值、二氧化碳排放量和人口总数,利用支持向量机的多类集合和线性判别分析对能源消耗进行分类。并与传统的多类支持向量机方法进行了比较。所得结果是很有希望的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Energy Consumption in the Balkans using Ensemble Learning Methods
This paper explores the use of ensemble learning methods for classifying the energy consumption from (i) gross domestic product, (ii) CO2 emissions, and (iii) total number of population. The proposed analysis extends the previous research where prediction of the energy consumption values was performed using regression strategies. The experiment involves energy use data from five different Balkan countries, which is collected in the period 1995-2014. The energy consumption classes are obtained from the energy use values by K-Medians and analysed. Then, multiclass ensembles of support vector machine and linear discriminant analysis are used for classification of the energy consumption given the gross domestic product, the CO2 emissions, and the total number of population. The classification task is compared with a traditional multiclass support vector machine approach. The obtained results are very promising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信