基于简单的多路可见性图技术区分多变量时间序列

Jie Liu, Hongling Liu, Zejia Huang, Qiang Tang
{"title":"基于简单的多路可见性图技术区分多变量时间序列","authors":"Jie Liu, Hongling Liu, Zejia Huang, Qiang Tang","doi":"10.1109/ICICIP.2015.7388185","DOIUrl":null,"url":null,"abstract":"In this brief paper, based on multiplex visibility graphs technique, a simple and fast computational method was proposed to fulfill converting high dimensional timeseries into a multiplex graph with different characters. The constructed multiplex graph inherits several properties of the time series in its structure. Thereby, periodic series, random series, and chaotic series convert into quite different multiplex networks with different average degree, characteristic path length, diameter, clustering coefficient, different degree distribution, and modularity, etc. By means of this new approach, with such different networks measures, one can characterize multivariate timeseries from a new viewpoint of complex networks.","PeriodicalId":265426,"journal":{"name":"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Differ multivariate timeseries from each other based on a simple multiplex visibility graphs technique\",\"authors\":\"Jie Liu, Hongling Liu, Zejia Huang, Qiang Tang\",\"doi\":\"10.1109/ICICIP.2015.7388185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this brief paper, based on multiplex visibility graphs technique, a simple and fast computational method was proposed to fulfill converting high dimensional timeseries into a multiplex graph with different characters. The constructed multiplex graph inherits several properties of the time series in its structure. Thereby, periodic series, random series, and chaotic series convert into quite different multiplex networks with different average degree, characteristic path length, diameter, clustering coefficient, different degree distribution, and modularity, etc. By means of this new approach, with such different networks measures, one can characterize multivariate timeseries from a new viewpoint of complex networks.\",\"PeriodicalId\":265426,\"journal\":{\"name\":\"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP.2015.7388185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2015.7388185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文基于多路可见图技术,提出了一种简单快速的计算方法,实现了将高维时间序列转换为具有不同特征的多路可见图。所构造的多路图在结构上继承了时间序列的若干性质。因此,周期序列、随机序列和混沌序列转化为具有不同平均度、不同特征路径长度、直径、聚类系数、不同程度分布、模块化等特点的迥然不同的复用网络。通过这种新方法,利用这些不同的网络度量,人们可以从复杂网络的新观点来表征多元时间序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differ multivariate timeseries from each other based on a simple multiplex visibility graphs technique
In this brief paper, based on multiplex visibility graphs technique, a simple and fast computational method was proposed to fulfill converting high dimensional timeseries into a multiplex graph with different characters. The constructed multiplex graph inherits several properties of the time series in its structure. Thereby, periodic series, random series, and chaotic series convert into quite different multiplex networks with different average degree, characteristic path length, diameter, clustering coefficient, different degree distribution, and modularity, etc. By means of this new approach, with such different networks measures, one can characterize multivariate timeseries from a new viewpoint of complex networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信