{"title":"采用InP HBT技术的12位10GSps超高速DAC","authors":"Qi-Cheng Ye, Youtao Zhang, Xiaopeng Li, Yi Zhang","doi":"10.1109/ICAM.2017.8242128","DOIUrl":null,"url":null,"abstract":"In this paper a 12bit 10GSps current-steering digital-to-analog converter (DAC) in 280GHz fT 0.7um InP HBT technology is presented. The DAC core works in a double-sampling way, which reduces the maximum clock frequency by half. The double-sampling switch is separated to reduce the inter-symbol-interference. An improved current steer switch architecture is adopted to enhance high frequency dynamic performance. According to the simulation results, the chip achieved a DNL/INL of 0.7/0.8 LSB respectively. The SFDR at low frequency is above 71dBc, and the lowest SFDR up to Nyquist frequency is above 46.96dBc.","PeriodicalId":117801,"journal":{"name":"2017 2nd IEEE International Conference on Integrated Circuits and Microsystems (ICICM)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A 12-bit 10GSps ultra high speed DAC in InP HBT technology\",\"authors\":\"Qi-Cheng Ye, Youtao Zhang, Xiaopeng Li, Yi Zhang\",\"doi\":\"10.1109/ICAM.2017.8242128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a 12bit 10GSps current-steering digital-to-analog converter (DAC) in 280GHz fT 0.7um InP HBT technology is presented. The DAC core works in a double-sampling way, which reduces the maximum clock frequency by half. The double-sampling switch is separated to reduce the inter-symbol-interference. An improved current steer switch architecture is adopted to enhance high frequency dynamic performance. According to the simulation results, the chip achieved a DNL/INL of 0.7/0.8 LSB respectively. The SFDR at low frequency is above 71dBc, and the lowest SFDR up to Nyquist frequency is above 46.96dBc.\",\"PeriodicalId\":117801,\"journal\":{\"name\":\"2017 2nd IEEE International Conference on Integrated Circuits and Microsystems (ICICM)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 2nd IEEE International Conference on Integrated Circuits and Microsystems (ICICM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAM.2017.8242128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd IEEE International Conference on Integrated Circuits and Microsystems (ICICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAM.2017.8242128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
本文介绍了一种采用280GHz fT 0.7um InP HBT技术的12bit 10GSps电流转向数模转换器(DAC)。DAC核心以双采样方式工作,从而将最大时钟频率降低一半。双采样开关被分离,以减少符号间的干扰。采用改进的电流转向开关结构,提高了高频动态性能。仿真结果表明,该芯片的DNL/INL分别为0.7/0.8 LSB。低频时的SFDR在71dBc以上,奈奎斯特频率以下的最低SFDR在46.96dBc以上。
A 12-bit 10GSps ultra high speed DAC in InP HBT technology
In this paper a 12bit 10GSps current-steering digital-to-analog converter (DAC) in 280GHz fT 0.7um InP HBT technology is presented. The DAC core works in a double-sampling way, which reduces the maximum clock frequency by half. The double-sampling switch is separated to reduce the inter-symbol-interference. An improved current steer switch architecture is adopted to enhance high frequency dynamic performance. According to the simulation results, the chip achieved a DNL/INL of 0.7/0.8 LSB respectively. The SFDR at low frequency is above 71dBc, and the lowest SFDR up to Nyquist frequency is above 46.96dBc.