具有奇异边界外数据的混合局部-非局部抛物型PDE的最优控制

J. Djida, G. Mophou, M. Warma
{"title":"具有奇异边界外数据的混合局部-非局部抛物型PDE的最优控制","authors":"J. Djida, G. Mophou, M. Warma","doi":"10.3934/eect.2022015","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We consider parabolic equations on bounded smooth open sets <inline-formula><tex-math id=\"M1\">\\begin{document}$ {\\Omega}\\subset \\mathbb{R}^N $\\end{document}</tex-math></inline-formula> (<inline-formula><tex-math id=\"M2\">\\begin{document}$ N\\ge 1 $\\end{document}</tex-math></inline-formula>) with mixed Dirichlet type boundary-exterior conditions associated with the elliptic operator <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\mathscr{L} : = - \\Delta + (-\\Delta)^{s} $\\end{document}</tex-math></inline-formula> (<inline-formula><tex-math id=\"M4\">\\begin{document}$ 0<s<1 $\\end{document}</tex-math></inline-formula>). Firstly, we prove several well-posedness and regularity results of the associated elliptic and parabolic problems with smooth, and then with singular boundary-exterior data. Secondly, we show the existence of optimal solutions of associated optimal control problems, and we characterize the optimality conditions. This is the first time that such topics have been presented and studied in a unified fashion for mixed local-nonlocal PDEs with singular data.</p>","PeriodicalId":176362,"journal":{"name":"Evolution Equations &amp; Control Theory","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal control of mixed local-nonlocal parabolic PDE with singular boundary-exterior data\",\"authors\":\"J. Djida, G. Mophou, M. Warma\",\"doi\":\"10.3934/eect.2022015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>We consider parabolic equations on bounded smooth open sets <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ {\\\\Omega}\\\\subset \\\\mathbb{R}^N $\\\\end{document}</tex-math></inline-formula> (<inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ N\\\\ge 1 $\\\\end{document}</tex-math></inline-formula>) with mixed Dirichlet type boundary-exterior conditions associated with the elliptic operator <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ \\\\mathscr{L} : = - \\\\Delta + (-\\\\Delta)^{s} $\\\\end{document}</tex-math></inline-formula> (<inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ 0<s<1 $\\\\end{document}</tex-math></inline-formula>). Firstly, we prove several well-posedness and regularity results of the associated elliptic and parabolic problems with smooth, and then with singular boundary-exterior data. Secondly, we show the existence of optimal solutions of associated optimal control problems, and we characterize the optimality conditions. This is the first time that such topics have been presented and studied in a unified fashion for mixed local-nonlocal PDEs with singular data.</p>\",\"PeriodicalId\":176362,\"journal\":{\"name\":\"Evolution Equations &amp; Control Theory\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolution Equations &amp; Control Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/eect.2022015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution Equations &amp; Control Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/eect.2022015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑有界光滑开集\begin{document}$ {\Omega}\子集\mathbb{R}^N $\end{document} (\begin{document}$ N\ge 1 $\end{document})上的抛物方程,该方程具有与椭圆算子\begin{document}$ \mathscr{L}相关的混合Dirichlet型边外条件:= -\Delta + (-\Delta)^{s} $\end{document} (\begin{document}$ 0).首先证明了相关椭圆型和抛物型问题在光滑条件下的若干适定性和正则性结果,然后证明了奇异边界外数据的若干适定性和正则性结果。其次,我们证明了关联最优控制问题的最优解的存在性,并刻画了最优性条件。这是第一次以统一的方式提出和研究具有奇异数据的混合局部-非局部偏微分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal control of mixed local-nonlocal parabolic PDE with singular boundary-exterior data

We consider parabolic equations on bounded smooth open sets \begin{document}$ {\Omega}\subset \mathbb{R}^N $\end{document} (\begin{document}$ N\ge 1 $\end{document}) with mixed Dirichlet type boundary-exterior conditions associated with the elliptic operator \begin{document}$ \mathscr{L} : = - \Delta + (-\Delta)^{s} $\end{document} (\begin{document}$ 0). Firstly, we prove several well-posedness and regularity results of the associated elliptic and parabolic problems with smooth, and then with singular boundary-exterior data. Secondly, we show the existence of optimal solutions of associated optimal control problems, and we characterize the optimality conditions. This is the first time that such topics have been presented and studied in a unified fashion for mixed local-nonlocal PDEs with singular data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信