基于集成方法的基于文本数据预测肺癌分期的集成机器学习模型

D. Reddy, Emmidi Naga Hemanth Kumar, D. Reddy, Monika P
{"title":"基于集成方法的基于文本数据预测肺癌分期的集成机器学习模型","authors":"D. Reddy, Emmidi Naga Hemanth Kumar, D. Reddy, Monika P","doi":"10.1109/ICAIT47043.2019.8987295","DOIUrl":null,"url":null,"abstract":"Research and Development on cancer detection is more on imaging than textual data. With the help of documented symptoms in the form of text and Machine Learning (ML) techniques, it is possible to predict the lung cancerstages effectively. This paper conjectures the oeuvre modelwhich is efficient in predicting the stages of lung carcinoma by applying the concepts of ML algorithms. The proposed model is combination of K-Nearest Neighbours, Decision Tree and Neural Networks modelsalong with bagging ensemble method for enhancing the accuracy of the overall prediction. The predictedresults of the suggested model are showing better accuracy compared to individual algorithms.","PeriodicalId":221994,"journal":{"name":"2019 1st International Conference on Advances in Information Technology (ICAIT)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Integrated Machine Learning Model for Prediction of Lung Cancer Stages from Textual data using Ensemble Method\",\"authors\":\"D. Reddy, Emmidi Naga Hemanth Kumar, D. Reddy, Monika P\",\"doi\":\"10.1109/ICAIT47043.2019.8987295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research and Development on cancer detection is more on imaging than textual data. With the help of documented symptoms in the form of text and Machine Learning (ML) techniques, it is possible to predict the lung cancerstages effectively. This paper conjectures the oeuvre modelwhich is efficient in predicting the stages of lung carcinoma by applying the concepts of ML algorithms. The proposed model is combination of K-Nearest Neighbours, Decision Tree and Neural Networks modelsalong with bagging ensemble method for enhancing the accuracy of the overall prediction. The predictedresults of the suggested model are showing better accuracy compared to individual algorithms.\",\"PeriodicalId\":221994,\"journal\":{\"name\":\"2019 1st International Conference on Advances in Information Technology (ICAIT)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 1st International Conference on Advances in Information Technology (ICAIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIT47043.2019.8987295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 1st International Conference on Advances in Information Technology (ICAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIT47043.2019.8987295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

癌症检测的研究和发展更多的是基于图像而不是文本数据。借助以文本形式记录的症状和机器学习(ML)技术,可以有效地预测肺癌的分期。本文运用机器学习算法的概念,推测了一个能有效预测肺癌分期的oeuvre模型。该模型结合了k近邻、决策树和神经网络模型以及套袋集成方法,以提高整体预测的准确性。与单个算法相比,该模型的预测结果显示出更高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated Machine Learning Model for Prediction of Lung Cancer Stages from Textual data using Ensemble Method
Research and Development on cancer detection is more on imaging than textual data. With the help of documented symptoms in the form of text and Machine Learning (ML) techniques, it is possible to predict the lung cancerstages effectively. This paper conjectures the oeuvre modelwhich is efficient in predicting the stages of lung carcinoma by applying the concepts of ML algorithms. The proposed model is combination of K-Nearest Neighbours, Decision Tree and Neural Networks modelsalong with bagging ensemble method for enhancing the accuracy of the overall prediction. The predictedresults of the suggested model are showing better accuracy compared to individual algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信