微调特征选择,通过完全连接的元学习器架构改进前列腺分割

Dimitris Zaridis, E. Mylona, N. Tachos, K. Marias, M. Tsiknakis, D. Fotiadis
{"title":"微调特征选择,通过完全连接的元学习器架构改进前列腺分割","authors":"Dimitris Zaridis, E. Mylona, N. Tachos, K. Marias, M. Tsiknakis, D. Fotiadis","doi":"10.1109/BHI56158.2022.9926929","DOIUrl":null,"url":null,"abstract":"Precise delineation of the prostate gland on MRI is the cornerstone for accurate prostate cancer diagnosis, detection, characterization and treatment. The present work proposes a meta-learner deep learning (DL) network that combines the complexity of 3 well-established DL models and fine tune them in order to improve the segmentation of the prostate compared to the base learners. The backbone of the meta-learner consist the original U-net, Dense2U-net and Bridged U-net models. A model was added on top of the three base networks that has four convolutions with different receptor fields. The meta-learner outperformed the base-learners in 4 out of 5 performance metrics. The median Dice Score for the meta-learner was 89% while for the second best model it was 83%. Except for Hausdorff distance, where the meta-learner and Dense2U-net performed equally well, the improvement achieved in terms of average sensitivity, balanced accuracy, dice score and rand error, compared to the best performing base-learner, was 6%, 3%, 5% and 4%, respectively.","PeriodicalId":347210,"journal":{"name":"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fine-tuned feature selection to improve prostate segmentation via a fully connected meta-learner architecture\",\"authors\":\"Dimitris Zaridis, E. Mylona, N. Tachos, K. Marias, M. Tsiknakis, D. Fotiadis\",\"doi\":\"10.1109/BHI56158.2022.9926929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precise delineation of the prostate gland on MRI is the cornerstone for accurate prostate cancer diagnosis, detection, characterization and treatment. The present work proposes a meta-learner deep learning (DL) network that combines the complexity of 3 well-established DL models and fine tune them in order to improve the segmentation of the prostate compared to the base learners. The backbone of the meta-learner consist the original U-net, Dense2U-net and Bridged U-net models. A model was added on top of the three base networks that has four convolutions with different receptor fields. The meta-learner outperformed the base-learners in 4 out of 5 performance metrics. The median Dice Score for the meta-learner was 89% while for the second best model it was 83%. Except for Hausdorff distance, where the meta-learner and Dense2U-net performed equally well, the improvement achieved in terms of average sensitivity, balanced accuracy, dice score and rand error, compared to the best performing base-learner, was 6%, 3%, 5% and 4%, respectively.\",\"PeriodicalId\":347210,\"journal\":{\"name\":\"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BHI56158.2022.9926929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BHI56158.2022.9926929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在MRI上精确描绘前列腺是准确诊断、检测、表征和治疗前列腺癌的基石。本研究提出了一个元学习深度学习(DL)网络,该网络结合了3个已建立的深度学习模型的复杂性,并对它们进行微调,以便与基础学习器相比改善前列腺的分割。元学习者的主干包括原始的U-net、Dense2U-net和桥接U-net模型。在三个基础网络的基础上添加了一个模型,该网络具有四个具有不同受体域的卷积。元学习者在5个绩效指标中的4个表现优于基础学习者。元学习者的骰子得分中值是89%,而第二好的模型是83%。除了Hausdorff距离之外,元学习器和Dense2U-net在平均灵敏度、平衡精度、骰子得分和兰德误差方面的表现与表现最好的基础学习器相比,分别提高了6%、3%、5%和4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fine-tuned feature selection to improve prostate segmentation via a fully connected meta-learner architecture
Precise delineation of the prostate gland on MRI is the cornerstone for accurate prostate cancer diagnosis, detection, characterization and treatment. The present work proposes a meta-learner deep learning (DL) network that combines the complexity of 3 well-established DL models and fine tune them in order to improve the segmentation of the prostate compared to the base learners. The backbone of the meta-learner consist the original U-net, Dense2U-net and Bridged U-net models. A model was added on top of the three base networks that has four convolutions with different receptor fields. The meta-learner outperformed the base-learners in 4 out of 5 performance metrics. The median Dice Score for the meta-learner was 89% while for the second best model it was 83%. Except for Hausdorff distance, where the meta-learner and Dense2U-net performed equally well, the improvement achieved in terms of average sensitivity, balanced accuracy, dice score and rand error, compared to the best performing base-learner, was 6%, 3%, 5% and 4%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信