基于人工神经网络的电力系统混合状态估计与增强可视化

Amit Kumar, S. Chakrabarti
{"title":"基于人工神经网络的电力系统混合状态估计与增强可视化","authors":"Amit Kumar, S. Chakrabarti","doi":"10.1109/ISET-INDIA.2011.6145359","DOIUrl":null,"url":null,"abstract":"The paper presents an artificial neural network (ANN)-based hybrid state estimator for estimating the states of a power system in the presence of conventional asynchronous as well as synchronous phasor measurements. Case studies on test systems show promising results for the ANN-based estimator. The paper also presents methodologies to enhance the visualization of the power system during the intervals between successive outputs of the conventional state estimator. The ANN-based state estimators trained with measurements from phasor measurement units (PMUs) are shown to be useful for enhancing the visualization of the power system during such intervals.","PeriodicalId":265646,"journal":{"name":"ISGT2011-India","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"ANN-based hybrid state estimation and enhanced visualization of power systems\",\"authors\":\"Amit Kumar, S. Chakrabarti\",\"doi\":\"10.1109/ISET-INDIA.2011.6145359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents an artificial neural network (ANN)-based hybrid state estimator for estimating the states of a power system in the presence of conventional asynchronous as well as synchronous phasor measurements. Case studies on test systems show promising results for the ANN-based estimator. The paper also presents methodologies to enhance the visualization of the power system during the intervals between successive outputs of the conventional state estimator. The ANN-based state estimators trained with measurements from phasor measurement units (PMUs) are shown to be useful for enhancing the visualization of the power system during such intervals.\",\"PeriodicalId\":265646,\"journal\":{\"name\":\"ISGT2011-India\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISGT2011-India\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISET-INDIA.2011.6145359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISGT2011-India","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISET-INDIA.2011.6145359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

提出了一种基于人工神经网络(ANN)的混合状态估计器,用于估计传统异步和同步相量测量下的电力系统状态。测试系统的案例研究表明,基于人工神经网络的估计器具有良好的效果。本文还提出了在常规状态估计器连续输出间隔期间增强电力系统可视化的方法。用相量测量单元(pmu)的测量值训练的基于人工神经网络的状态估计器对于增强在此时间段内电力系统的可视化是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ANN-based hybrid state estimation and enhanced visualization of power systems
The paper presents an artificial neural network (ANN)-based hybrid state estimator for estimating the states of a power system in the presence of conventional asynchronous as well as synchronous phasor measurements. Case studies on test systems show promising results for the ANN-based estimator. The paper also presents methodologies to enhance the visualization of the power system during the intervals between successive outputs of the conventional state estimator. The ANN-based state estimators trained with measurements from phasor measurement units (PMUs) are shown to be useful for enhancing the visualization of the power system during such intervals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信