将残差块、密集块和盗梦块集成到nnUNet中

Niccolò McConnell, A. Miron, Zidong Wang, Yongmin Li
{"title":"将残差块、密集块和盗梦块集成到nnUNet中","authors":"Niccolò McConnell, A. Miron, Zidong Wang, Yongmin Li","doi":"10.1109/CBMS55023.2022.00045","DOIUrl":null,"url":null,"abstract":"The nnUNet is a fully automated and generalisable framework which automatically configures the full training pipeline for the segmentation task it is applied on, while taking into account dataset properties and hardware constraints. It utilises a basic UNet type architecture which is self-configuring in terms of topology. In this work, we propose to extend the nnUNet by integrating mechanisms from more advanced UNet variations such as the residual, dense, and inception blocks, resulting in three new nnUNet variations, namely the Residual-nnUNet, Dense-nnUNet, and Inception-nnUNet. We have evaluated the segmentation performance on eight datasets consisting of 20 target anatomical structures. Our results demonstrate that altering network architecture may lead to performance gains, but the extent of gains and the optimally chosen nnUNet variation is dataset dependent.","PeriodicalId":218475,"journal":{"name":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Integrating Residual, Dense, and Inception Blocks into the nnUNet\",\"authors\":\"Niccolò McConnell, A. Miron, Zidong Wang, Yongmin Li\",\"doi\":\"10.1109/CBMS55023.2022.00045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nnUNet is a fully automated and generalisable framework which automatically configures the full training pipeline for the segmentation task it is applied on, while taking into account dataset properties and hardware constraints. It utilises a basic UNet type architecture which is self-configuring in terms of topology. In this work, we propose to extend the nnUNet by integrating mechanisms from more advanced UNet variations such as the residual, dense, and inception blocks, resulting in three new nnUNet variations, namely the Residual-nnUNet, Dense-nnUNet, and Inception-nnUNet. We have evaluated the segmentation performance on eight datasets consisting of 20 target anatomical structures. Our results demonstrate that altering network architecture may lead to performance gains, but the extent of gains and the optimally chosen nnUNet variation is dataset dependent.\",\"PeriodicalId\":218475,\"journal\":{\"name\":\"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS55023.2022.00045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS55023.2022.00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

nnUNet是一个完全自动化和通用的框架,在考虑数据集属性和硬件约束的同时,它会自动为它应用的分割任务配置完整的训练管道。它利用基本的UNet类型架构,在拓扑方面是自配置的。在这项工作中,我们建议通过集成来自更高级的UNet变体(如残差、密集和初始块)的机制来扩展nnUNet,从而产生三种新的nnUNet变体,即残差-nnUNet、密集-nnUNet和初始-nnUNet。我们评估了由20个目标解剖结构组成的8个数据集的分割性能。我们的结果表明,改变网络架构可能会导致性能提高,但提高的程度和最优选择的nnUNet变化取决于数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating Residual, Dense, and Inception Blocks into the nnUNet
The nnUNet is a fully automated and generalisable framework which automatically configures the full training pipeline for the segmentation task it is applied on, while taking into account dataset properties and hardware constraints. It utilises a basic UNet type architecture which is self-configuring in terms of topology. In this work, we propose to extend the nnUNet by integrating mechanisms from more advanced UNet variations such as the residual, dense, and inception blocks, resulting in three new nnUNet variations, namely the Residual-nnUNet, Dense-nnUNet, and Inception-nnUNet. We have evaluated the segmentation performance on eight datasets consisting of 20 target anatomical structures. Our results demonstrate that altering network architecture may lead to performance gains, but the extent of gains and the optimally chosen nnUNet variation is dataset dependent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信