微电子封装铝导体晶界槽形核过程的原子力学模拟

T. Kitamura, R. Ohtani, T. Yamanaka, K. Yashiro
{"title":"微电子封装铝导体晶界槽形核过程的原子力学模拟","authors":"T. Kitamura, R. Ohtani, T. Yamanaka, K. Yashiro","doi":"10.1299/JSMEA1993.39.3_291","DOIUrl":null,"url":null,"abstract":"Failure of microelement such as a conductor in an LSI originates mostly from an atomic-scale defect. In this study, the nucleation process of grain boundary groove in an aluminum conductor is analyzed in terms of atomic mechanics. The motion of atoms near an intersection between grain boundary and surface near the melting temperature is simulated by the molecular dynamics. It, however, is impossible to analyze initiation of groove at the intersection in an actual component at its operating temperature by the molecular dynamics because the simulation can only reproduce the behavior of atoms over a very short period (about 10 -9 sec) due to the limitation of computational resources. A Monte Carlo method to simulate the atomic behavior in a longer period is proposed, focusing on the jumps of atoms along the surface. The grooving at a reasonable temperature is successfully simulated by the proposed method.","PeriodicalId":143127,"journal":{"name":"JSME international journal. Series A, mechanics and material engineering","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Atomic Mechanics Simulation on Nucleation Process of Grain Boundary Groove in Aluminum Conductor of Microelectronic Packages\",\"authors\":\"T. Kitamura, R. Ohtani, T. Yamanaka, K. Yashiro\",\"doi\":\"10.1299/JSMEA1993.39.3_291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Failure of microelement such as a conductor in an LSI originates mostly from an atomic-scale defect. In this study, the nucleation process of grain boundary groove in an aluminum conductor is analyzed in terms of atomic mechanics. The motion of atoms near an intersection between grain boundary and surface near the melting temperature is simulated by the molecular dynamics. It, however, is impossible to analyze initiation of groove at the intersection in an actual component at its operating temperature by the molecular dynamics because the simulation can only reproduce the behavior of atoms over a very short period (about 10 -9 sec) due to the limitation of computational resources. A Monte Carlo method to simulate the atomic behavior in a longer period is proposed, focusing on the jumps of atoms along the surface. The grooving at a reasonable temperature is successfully simulated by the proposed method.\",\"PeriodicalId\":143127,\"journal\":{\"name\":\"JSME international journal. Series A, mechanics and material engineering\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JSME international journal. Series A, mechanics and material engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1299/JSMEA1993.39.3_291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JSME international journal. Series A, mechanics and material engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JSMEA1993.39.3_291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在大规模集成电路中,导体等微元件的失效大多是由原子尺度的缺陷引起的。本文从原子力学的角度分析了铝导体晶界槽的成核过程。用分子动力学方法模拟了熔点附近晶界与表面交点附近原子的运动。然而,由于计算资源的限制,模拟只能在很短的时间内(约10 -9秒)再现原子的行为,因此无法通过分子动力学来分析实际组件在其工作温度下的交点处的凹槽起始。提出了一种蒙特卡罗方法来模拟原子在较长时间内的行为,重点关注原子沿表面的跳跃。该方法成功地模拟了合理温度下的开槽过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Atomic Mechanics Simulation on Nucleation Process of Grain Boundary Groove in Aluminum Conductor of Microelectronic Packages
Failure of microelement such as a conductor in an LSI originates mostly from an atomic-scale defect. In this study, the nucleation process of grain boundary groove in an aluminum conductor is analyzed in terms of atomic mechanics. The motion of atoms near an intersection between grain boundary and surface near the melting temperature is simulated by the molecular dynamics. It, however, is impossible to analyze initiation of groove at the intersection in an actual component at its operating temperature by the molecular dynamics because the simulation can only reproduce the behavior of atoms over a very short period (about 10 -9 sec) due to the limitation of computational resources. A Monte Carlo method to simulate the atomic behavior in a longer period is proposed, focusing on the jumps of atoms along the surface. The grooving at a reasonable temperature is successfully simulated by the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信