基于图像语义分割的静态三维地图重建

Feiran Li, Ming Ding, J. Takamatsu, T. Ogasawara
{"title":"基于图像语义分割的静态三维地图重建","authors":"Feiran Li, Ming Ding, J. Takamatsu, T. Ogasawara","doi":"10.1109/URAI.2018.8441765","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel approach to remove dynamic objects from the reconstructed 3D map. We use a pixel-wise, fully convolutional neural network (FCN) based image semantic segmentation method to detect the moving objects and coherently remove them. Both 2D and 3D filters are employed to deal with the stubborn unwanted pixels to preserve as much information as possible. Experiment shows our approach can effectively build static maps.","PeriodicalId":347727,"journal":{"name":"2018 15th International Conference on Ubiquitous Robots (UR)","volume":"6 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Static 3D Map Reconstruction based on Image Semantic Segmentation\",\"authors\":\"Feiran Li, Ming Ding, J. Takamatsu, T. Ogasawara\",\"doi\":\"10.1109/URAI.2018.8441765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a novel approach to remove dynamic objects from the reconstructed 3D map. We use a pixel-wise, fully convolutional neural network (FCN) based image semantic segmentation method to detect the moving objects and coherently remove them. Both 2D and 3D filters are employed to deal with the stubborn unwanted pixels to preserve as much information as possible. Experiment shows our approach can effectively build static maps.\",\"PeriodicalId\":347727,\"journal\":{\"name\":\"2018 15th International Conference on Ubiquitous Robots (UR)\",\"volume\":\"6 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 15th International Conference on Ubiquitous Robots (UR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/URAI.2018.8441765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Conference on Ubiquitous Robots (UR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URAI.2018.8441765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种从重建的三维地图中去除动态目标的新方法。我们使用基于像素的全卷积神经网络(FCN)图像语义分割方法来检测运动目标并将其连贯地去除。二维和三维滤波器都被用来处理顽固的不需要的像素,以保留尽可能多的信息。实验表明,该方法可以有效地构建静态地图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Static 3D Map Reconstruction based on Image Semantic Segmentation
In this paper we propose a novel approach to remove dynamic objects from the reconstructed 3D map. We use a pixel-wise, fully convolutional neural network (FCN) based image semantic segmentation method to detect the moving objects and coherently remove them. Both 2D and 3D filters are employed to deal with the stubborn unwanted pixels to preserve as much information as possible. Experiment shows our approach can effectively build static maps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信