{"title":"基于优化多核支持向量机的短期交通流预测","authors":"Xianyao Ling, Xinxin Feng, Zhonghui Chen, Yiwen Xu, Haifeng Zheng","doi":"10.1109/CEC.2017.7969326","DOIUrl":null,"url":null,"abstract":"Accurate prediction of the traffic state can help to solve the problem of urban traffic congestion, providing guiding advices for people's travel and traffic regulation. In this paper, we propose a novel short-term traffic flow prediction algorithm, which is based on Multi-kernel Support Vector Machine (MSVM) and Adaptive Particle Swarm Optimization (APSO). Firstly, we explore both the nonlinear and randomness characteristic of traffic flow, and hybridize Gaussian kernel and polynomial kernel to constitute the MSVM. Secondly, we optimize the parameters of MSVM with a novel APSO algorithm by considering both the historical and real-time traffic data. We evaluate our algorithm by doing thorough experiment on a large real dataset. The results show that our algorithm can do a timely and adaptive prediction even in the rush hour when the traffic conditions change rapidly. At the same time, the prediction results are more accurate compared to four baseline methods.","PeriodicalId":335123,"journal":{"name":"2017 IEEE Congress on Evolutionary Computation (CEC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Short-term traffic flow prediction with optimized Multi-kernel Support Vector Machine\",\"authors\":\"Xianyao Ling, Xinxin Feng, Zhonghui Chen, Yiwen Xu, Haifeng Zheng\",\"doi\":\"10.1109/CEC.2017.7969326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate prediction of the traffic state can help to solve the problem of urban traffic congestion, providing guiding advices for people's travel and traffic regulation. In this paper, we propose a novel short-term traffic flow prediction algorithm, which is based on Multi-kernel Support Vector Machine (MSVM) and Adaptive Particle Swarm Optimization (APSO). Firstly, we explore both the nonlinear and randomness characteristic of traffic flow, and hybridize Gaussian kernel and polynomial kernel to constitute the MSVM. Secondly, we optimize the parameters of MSVM with a novel APSO algorithm by considering both the historical and real-time traffic data. We evaluate our algorithm by doing thorough experiment on a large real dataset. The results show that our algorithm can do a timely and adaptive prediction even in the rush hour when the traffic conditions change rapidly. At the same time, the prediction results are more accurate compared to four baseline methods.\",\"PeriodicalId\":335123,\"journal\":{\"name\":\"2017 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2017.7969326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2017.7969326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Short-term traffic flow prediction with optimized Multi-kernel Support Vector Machine
Accurate prediction of the traffic state can help to solve the problem of urban traffic congestion, providing guiding advices for people's travel and traffic regulation. In this paper, we propose a novel short-term traffic flow prediction algorithm, which is based on Multi-kernel Support Vector Machine (MSVM) and Adaptive Particle Swarm Optimization (APSO). Firstly, we explore both the nonlinear and randomness characteristic of traffic flow, and hybridize Gaussian kernel and polynomial kernel to constitute the MSVM. Secondly, we optimize the parameters of MSVM with a novel APSO algorithm by considering both the historical and real-time traffic data. We evaluate our algorithm by doing thorough experiment on a large real dataset. The results show that our algorithm can do a timely and adaptive prediction even in the rush hour when the traffic conditions change rapidly. At the same time, the prediction results are more accurate compared to four baseline methods.