M. Awal, Md Rifat Kaisar Rachi, Md Rashed Hassan Bipu, Hui Yu, I. Husain
{"title":"统一虚振控制的自适应预同步与离散时间实现","authors":"M. Awal, Md Rifat Kaisar Rachi, Md Rashed Hassan Bipu, Hui Yu, I. Husain","doi":"10.1109/ECCE47101.2021.9595171","DOIUrl":null,"url":null,"abstract":"Unified virtual oscillator controller (uVOC) is a nonlinear time-domain controller which offers robust synchronization and enhanced fault ride-through for grid-following (GFL) and grid-forming (GFM) converters without the need for switching to a back-up controller. An adaptive pre-synchronization method is proposed for uVOC to enable smooth start-up and seamless connection to an existing grid/network with non-nominal frequency and/or voltage magnitude at the point of coupling (PoC). Furthermore, we evaluate the efficacy of different discretization methods for discrete-time (DT) implementation of the nonlinear dynamics of uVOC and demonstrate that zero-order-hold (ZOH) discretization fails at sampling frequencies up to tens of kHz. DT implementation of uVOC using second-order Runge-Kutta method is presented, which offers a reasonsable compromise between computational overhead and discretization accuracy. In addition, an inductor (L) or an inductor-capacitor-inductor (LCL) type input filter used in typical voltage source converter (VSC) applications leads to voltage deviation at the converter output terminal depending on the power flow. A terminal voltage compensator (TVC) for such voltage deviation is proposed. The efficacy of the proposed methods are demonstrated through laboratory hardware experiments.","PeriodicalId":349891,"journal":{"name":"2021 IEEE Energy Conversion Congress and Exposition (ECCE)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive Pre-Synchronization and Discrete-Time Implementation for Unified Virtual Oscillator Control\",\"authors\":\"M. Awal, Md Rifat Kaisar Rachi, Md Rashed Hassan Bipu, Hui Yu, I. Husain\",\"doi\":\"10.1109/ECCE47101.2021.9595171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unified virtual oscillator controller (uVOC) is a nonlinear time-domain controller which offers robust synchronization and enhanced fault ride-through for grid-following (GFL) and grid-forming (GFM) converters without the need for switching to a back-up controller. An adaptive pre-synchronization method is proposed for uVOC to enable smooth start-up and seamless connection to an existing grid/network with non-nominal frequency and/or voltage magnitude at the point of coupling (PoC). Furthermore, we evaluate the efficacy of different discretization methods for discrete-time (DT) implementation of the nonlinear dynamics of uVOC and demonstrate that zero-order-hold (ZOH) discretization fails at sampling frequencies up to tens of kHz. DT implementation of uVOC using second-order Runge-Kutta method is presented, which offers a reasonsable compromise between computational overhead and discretization accuracy. In addition, an inductor (L) or an inductor-capacitor-inductor (LCL) type input filter used in typical voltage source converter (VSC) applications leads to voltage deviation at the converter output terminal depending on the power flow. A terminal voltage compensator (TVC) for such voltage deviation is proposed. The efficacy of the proposed methods are demonstrated through laboratory hardware experiments.\",\"PeriodicalId\":349891,\"journal\":{\"name\":\"2021 IEEE Energy Conversion Congress and Exposition (ECCE)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Energy Conversion Congress and Exposition (ECCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCE47101.2021.9595171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Energy Conversion Congress and Exposition (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE47101.2021.9595171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive Pre-Synchronization and Discrete-Time Implementation for Unified Virtual Oscillator Control
Unified virtual oscillator controller (uVOC) is a nonlinear time-domain controller which offers robust synchronization and enhanced fault ride-through for grid-following (GFL) and grid-forming (GFM) converters without the need for switching to a back-up controller. An adaptive pre-synchronization method is proposed for uVOC to enable smooth start-up and seamless connection to an existing grid/network with non-nominal frequency and/or voltage magnitude at the point of coupling (PoC). Furthermore, we evaluate the efficacy of different discretization methods for discrete-time (DT) implementation of the nonlinear dynamics of uVOC and demonstrate that zero-order-hold (ZOH) discretization fails at sampling frequencies up to tens of kHz. DT implementation of uVOC using second-order Runge-Kutta method is presented, which offers a reasonsable compromise between computational overhead and discretization accuracy. In addition, an inductor (L) or an inductor-capacitor-inductor (LCL) type input filter used in typical voltage source converter (VSC) applications leads to voltage deviation at the converter output terminal depending on the power flow. A terminal voltage compensator (TVC) for such voltage deviation is proposed. The efficacy of the proposed methods are demonstrated through laboratory hardware experiments.