基于二维隐马尔可夫模型的图像分割新方法

J. Baumgartner, A. G. Flesia, J. Gimenez, J. Pucheta
{"title":"基于二维隐马尔可夫模型的图像分割新方法","authors":"J. Baumgartner, A. G. Flesia, J. Gimenez, J. Pucheta","doi":"10.1109/BRICS-CCI-CBIC.2013.43","DOIUrl":null,"url":null,"abstract":"Image segmentation is one of the fundamental problems in computer vision. In this work, we present a new segmentation algorithm that is based on the theory of two-dimensional hidden Markov models (2D-HMM). Unlike most 2D-HMM approaches we do not apply the Viterbi Algorithm, instead we present a computationally efficient algorithm that propagates the state probabilities through the image. This approach can easily be extended to higher dimensions. We compare the proposed method with a 2D-HMM standard algorithm and Iterated Conditional Modes using real world images like a radiography or a satellite image as well as synthetic images. The experimental results show that our approach is highly capable of condensing image segments. This gives our algorithm a significant advantage over the standard algorithm when dealing with noisy images with few classes.","PeriodicalId":306195,"journal":{"name":"2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A New Approach to Image Segmentation with Two-Dimensional Hidden Markov Models\",\"authors\":\"J. Baumgartner, A. G. Flesia, J. Gimenez, J. Pucheta\",\"doi\":\"10.1109/BRICS-CCI-CBIC.2013.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image segmentation is one of the fundamental problems in computer vision. In this work, we present a new segmentation algorithm that is based on the theory of two-dimensional hidden Markov models (2D-HMM). Unlike most 2D-HMM approaches we do not apply the Viterbi Algorithm, instead we present a computationally efficient algorithm that propagates the state probabilities through the image. This approach can easily be extended to higher dimensions. We compare the proposed method with a 2D-HMM standard algorithm and Iterated Conditional Modes using real world images like a radiography or a satellite image as well as synthetic images. The experimental results show that our approach is highly capable of condensing image segments. This gives our algorithm a significant advantage over the standard algorithm when dealing with noisy images with few classes.\",\"PeriodicalId\":306195,\"journal\":{\"name\":\"2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BRICS-CCI-CBIC.2013.43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRICS-CCI-CBIC.2013.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

图像分割是计算机视觉的基本问题之一。在这项工作中,我们提出了一种新的基于二维隐马尔可夫模型(2D-HMM)理论的分割算法。与大多数2D-HMM方法不同,我们没有应用Viterbi算法,而是提出了一种计算效率高的算法,该算法通过图像传播状态概率。这种方法可以很容易地扩展到更高的维度。我们将所提出的方法与2D-HMM标准算法和使用真实世界图像(如射线照相或卫星图像以及合成图像)的迭代条件模式进行比较。实验结果表明,该方法具有较强的图像片段压缩能力。这使得我们的算法在处理带有少量类的噪声图像时比标准算法具有显著的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Approach to Image Segmentation with Two-Dimensional Hidden Markov Models
Image segmentation is one of the fundamental problems in computer vision. In this work, we present a new segmentation algorithm that is based on the theory of two-dimensional hidden Markov models (2D-HMM). Unlike most 2D-HMM approaches we do not apply the Viterbi Algorithm, instead we present a computationally efficient algorithm that propagates the state probabilities through the image. This approach can easily be extended to higher dimensions. We compare the proposed method with a 2D-HMM standard algorithm and Iterated Conditional Modes using real world images like a radiography or a satellite image as well as synthetic images. The experimental results show that our approach is highly capable of condensing image segments. This gives our algorithm a significant advantage over the standard algorithm when dealing with noisy images with few classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信