H. Gutierrez-Candano, S. Camacho-Léon, G. Dieck-Assad, S. Martínez-Chapa
{"title":"用于微创手术的自组装MEMS力传感器的设计与仿真","authors":"H. Gutierrez-Candano, S. Camacho-Léon, G. Dieck-Assad, S. Martínez-Chapa","doi":"10.1109/SAS.2011.5739819","DOIUrl":null,"url":null,"abstract":"This work describes the design and Finite Element Method (FEM) simulation of an integrated force microsensor which introduces a self-assembled tactile structure with potential application to Minimally Invasive Surgery (MIS). The sensor is designed to be compatible with Complementary Metal-Oxide-Semiconductor-Micro-Electro-Mechanical Systems (CMOS-MEMS) technology under monolithic microfabrication processes, and allows force measurements up to the micronewton scale.","PeriodicalId":401849,"journal":{"name":"2011 IEEE Sensors Applications Symposium","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and simulation of a self-assembled MEMS force sensor for Minimally Invasive Surgery\",\"authors\":\"H. Gutierrez-Candano, S. Camacho-Léon, G. Dieck-Assad, S. Martínez-Chapa\",\"doi\":\"10.1109/SAS.2011.5739819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work describes the design and Finite Element Method (FEM) simulation of an integrated force microsensor which introduces a self-assembled tactile structure with potential application to Minimally Invasive Surgery (MIS). The sensor is designed to be compatible with Complementary Metal-Oxide-Semiconductor-Micro-Electro-Mechanical Systems (CMOS-MEMS) technology under monolithic microfabrication processes, and allows force measurements up to the micronewton scale.\",\"PeriodicalId\":401849,\"journal\":{\"name\":\"2011 IEEE Sensors Applications Symposium\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Sensors Applications Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAS.2011.5739819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Sensors Applications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS.2011.5739819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and simulation of a self-assembled MEMS force sensor for Minimally Invasive Surgery
This work describes the design and Finite Element Method (FEM) simulation of an integrated force microsensor which introduces a self-assembled tactile structure with potential application to Minimally Invasive Surgery (MIS). The sensor is designed to be compatible with Complementary Metal-Oxide-Semiconductor-Micro-Electro-Mechanical Systems (CMOS-MEMS) technology under monolithic microfabrication processes, and allows force measurements up to the micronewton scale.