高阶系统的优化与极小原理的扩展

Sunil K. Agrawal, T. Veeraklaew
{"title":"高阶系统的优化与极小原理的扩展","authors":"Sunil K. Agrawal, T. Veeraklaew","doi":"10.1109/CDC.1999.832904","DOIUrl":null,"url":null,"abstract":"In previous years, using tools of linear and nonlinear systems theory, it has been shown that a large number of dynamic systems can be written in canonical forms. These canonical forms are alternatives to state-space forms and can be represented by higher-order differential equations. For planning and control purposes, these canonical forms provide a number of advantages when compared to their corresponding first-order forms. We address the question of optimization of dynamic systems described by higher-order differential equations. The minimum principle for higher-order systems is derived directly from their higher-order forms. The results are illustrated by an example.","PeriodicalId":137513,"journal":{"name":"Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimization of higher-order systems and extensions of minimum principle\",\"authors\":\"Sunil K. Agrawal, T. Veeraklaew\",\"doi\":\"10.1109/CDC.1999.832904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In previous years, using tools of linear and nonlinear systems theory, it has been shown that a large number of dynamic systems can be written in canonical forms. These canonical forms are alternatives to state-space forms and can be represented by higher-order differential equations. For planning and control purposes, these canonical forms provide a number of advantages when compared to their corresponding first-order forms. We address the question of optimization of dynamic systems described by higher-order differential equations. The minimum principle for higher-order systems is derived directly from their higher-order forms. The results are illustrated by an example.\",\"PeriodicalId\":137513,\"journal\":{\"name\":\"Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1999.832904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1999.832904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在过去的几年里,利用线性和非线性系统理论的工具,已经证明了大量的动态系统可以写成规范形式。这些规范形式是状态空间形式的替代品,可以用高阶微分方程表示。出于计划和控制的目的,与相应的一阶形式相比,这些规范形式提供了许多优点。我们处理由高阶微分方程描述的动态系统的优化问题。高阶系统的最小原理是直接从它们的高阶形式推导出来的。算例说明了计算结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of higher-order systems and extensions of minimum principle
In previous years, using tools of linear and nonlinear systems theory, it has been shown that a large number of dynamic systems can be written in canonical forms. These canonical forms are alternatives to state-space forms and can be represented by higher-order differential equations. For planning and control purposes, these canonical forms provide a number of advantages when compared to their corresponding first-order forms. We address the question of optimization of dynamic systems described by higher-order differential equations. The minimum principle for higher-order systems is derived directly from their higher-order forms. The results are illustrated by an example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信