基于fpga的卷积神经网络快速算法评估

Liqiang Lu, Yun Liang, Qingcheng Xiao, Shengen Yan
{"title":"基于fpga的卷积神经网络快速算法评估","authors":"Liqiang Lu, Yun Liang, Qingcheng Xiao, Shengen Yan","doi":"10.1109/FCCM.2017.64","DOIUrl":null,"url":null,"abstract":"In recent years, Convolutional Neural Networks (CNNs) have become widely adopted for computer vision tasks. FPGAs have been adequately explored as a promising hardware accelerator for CNNs due to its high performance, energy efficiency, and reconfigurability. However, prior FPGA solutions based on the conventional convolutional algorithm is often bounded by the computational capability of FPGAs (e.g., the number of DSPs). In this paper, we demonstrate that fast Winograd algorithm can dramatically reduce the arithmetic complexity, and improve the performance of CNNs on FPGAs. We first propose a novel architecture for implementing Winograd algorithm on FPGAs. Our design employs line buffer structure to effectively reuse the feature map data among different tiles. We also effectively pipeline the Winograd PE engine and initiate multiple PEs through parallelization. Meanwhile, there exists a complex design space to explore. We propose an analytical model to predict the resource usage and reason about the performance. Then, we use the model to guide a fast design space exploration. Experiments using the state-of-the-art CNNs demonstrate the best performance and energy efficiency on FPGAs. We achieve an average 1006.4 GOP/s for the convolutional layers and 854.6 GOP/s for the overall AlexNet and an average 3044.7 GOP/s for the convolutional layers and 2940.7 GOP/s for the overall VGG16 on Xilinx ZCU102 platform.","PeriodicalId":124631,"journal":{"name":"2017 IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"254","resultStr":"{\"title\":\"Evaluating Fast Algorithms for Convolutional Neural Networks on FPGAs\",\"authors\":\"Liqiang Lu, Yun Liang, Qingcheng Xiao, Shengen Yan\",\"doi\":\"10.1109/FCCM.2017.64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, Convolutional Neural Networks (CNNs) have become widely adopted for computer vision tasks. FPGAs have been adequately explored as a promising hardware accelerator for CNNs due to its high performance, energy efficiency, and reconfigurability. However, prior FPGA solutions based on the conventional convolutional algorithm is often bounded by the computational capability of FPGAs (e.g., the number of DSPs). In this paper, we demonstrate that fast Winograd algorithm can dramatically reduce the arithmetic complexity, and improve the performance of CNNs on FPGAs. We first propose a novel architecture for implementing Winograd algorithm on FPGAs. Our design employs line buffer structure to effectively reuse the feature map data among different tiles. We also effectively pipeline the Winograd PE engine and initiate multiple PEs through parallelization. Meanwhile, there exists a complex design space to explore. We propose an analytical model to predict the resource usage and reason about the performance. Then, we use the model to guide a fast design space exploration. Experiments using the state-of-the-art CNNs demonstrate the best performance and energy efficiency on FPGAs. We achieve an average 1006.4 GOP/s for the convolutional layers and 854.6 GOP/s for the overall AlexNet and an average 3044.7 GOP/s for the convolutional layers and 2940.7 GOP/s for the overall VGG16 on Xilinx ZCU102 platform.\",\"PeriodicalId\":124631,\"journal\":{\"name\":\"2017 IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"254\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCCM.2017.64\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2017.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 254

摘要

近年来,卷积神经网络(cnn)被广泛应用于计算机视觉任务。fpga由于其高性能、高能效和可重构性,已经被充分地探索作为一种有前途的cnn硬件加速器。然而,先前基于传统卷积算法的FPGA解决方案往往受到FPGA计算能力的限制(例如,dsp的数量)。在本文中,我们证明了快速Winograd算法可以显著降低算法复杂度,并提高cnn在fpga上的性能。我们首先提出了一种在fpga上实现Winograd算法的新架构。我们的设计采用了行缓冲结构,可以有效地在不同的图块之间重用特征图数据。我们还有效地流水线Winograd PE引擎,并通过并行化启动多个PE。同时,也存在着复杂的设计空间有待探索。我们提出了一个预测资源使用和性能原因的分析模型。然后,我们用这个模型来指导一个快速的设计空间探索。使用最先进的cnn的实验证明了fpga的最佳性能和能效。我们在Xilinx ZCU102平台上实现了卷积层的平均1006.4 GOP/s和整体AlexNet的平均854.6 GOP/s,卷积层的平均3044.7 GOP/s和整体VGG16的平均2940.7 GOP/s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating Fast Algorithms for Convolutional Neural Networks on FPGAs
In recent years, Convolutional Neural Networks (CNNs) have become widely adopted for computer vision tasks. FPGAs have been adequately explored as a promising hardware accelerator for CNNs due to its high performance, energy efficiency, and reconfigurability. However, prior FPGA solutions based on the conventional convolutional algorithm is often bounded by the computational capability of FPGAs (e.g., the number of DSPs). In this paper, we demonstrate that fast Winograd algorithm can dramatically reduce the arithmetic complexity, and improve the performance of CNNs on FPGAs. We first propose a novel architecture for implementing Winograd algorithm on FPGAs. Our design employs line buffer structure to effectively reuse the feature map data among different tiles. We also effectively pipeline the Winograd PE engine and initiate multiple PEs through parallelization. Meanwhile, there exists a complex design space to explore. We propose an analytical model to predict the resource usage and reason about the performance. Then, we use the model to guide a fast design space exploration. Experiments using the state-of-the-art CNNs demonstrate the best performance and energy efficiency on FPGAs. We achieve an average 1006.4 GOP/s for the convolutional layers and 854.6 GOP/s for the overall AlexNet and an average 3044.7 GOP/s for the convolutional layers and 2940.7 GOP/s for the overall VGG16 on Xilinx ZCU102 platform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信