C-to-Verilog翻译验证

Alan Leung, Dimitar Bounov, Sorin Lerner
{"title":"C-to-Verilog翻译验证","authors":"Alan Leung, Dimitar Bounov, Sorin Lerner","doi":"10.1109/MEMCOD.2015.7340466","DOIUrl":null,"url":null,"abstract":"To offset the high engineering cost of digital circuit design, hardware engineers are looking increasingly toward high-level languages such as C and C++ to implement their designs. To do this, they employ High-Level Synthesis (HLS) tools that translate their high-level specifications down to a hardware description language such as Verilog. Unfortunately, HLS tools themselves employ sophisticated optimization passes that may have bugs that silently introduce errors in realized hardware. The cost of such errors is high, as hardware is costly or impossible to repair if software patching is not an option. In this work, we present a translation validation approach for verifying the correctness of the HLS translation process. Given an initial C program and the generated Verilog code, our approach establishes their equivalence without relying on any intermediate results or representations produced by the HLS tool. We implemented our approach in a tool called VTV that is able to validate a body of programs compiled by the Xilinx Vivado HLS compiler.","PeriodicalId":106851,"journal":{"name":"2015 ACM/IEEE International Conference on Formal Methods and Models for Codesign (MEMOCODE)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"C-to-Verilog translation validation\",\"authors\":\"Alan Leung, Dimitar Bounov, Sorin Lerner\",\"doi\":\"10.1109/MEMCOD.2015.7340466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To offset the high engineering cost of digital circuit design, hardware engineers are looking increasingly toward high-level languages such as C and C++ to implement their designs. To do this, they employ High-Level Synthesis (HLS) tools that translate their high-level specifications down to a hardware description language such as Verilog. Unfortunately, HLS tools themselves employ sophisticated optimization passes that may have bugs that silently introduce errors in realized hardware. The cost of such errors is high, as hardware is costly or impossible to repair if software patching is not an option. In this work, we present a translation validation approach for verifying the correctness of the HLS translation process. Given an initial C program and the generated Verilog code, our approach establishes their equivalence without relying on any intermediate results or representations produced by the HLS tool. We implemented our approach in a tool called VTV that is able to validate a body of programs compiled by the Xilinx Vivado HLS compiler.\",\"PeriodicalId\":106851,\"journal\":{\"name\":\"2015 ACM/IEEE International Conference on Formal Methods and Models for Codesign (MEMOCODE)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 ACM/IEEE International Conference on Formal Methods and Models for Codesign (MEMOCODE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMCOD.2015.7340466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 ACM/IEEE International Conference on Formal Methods and Models for Codesign (MEMOCODE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMCOD.2015.7340466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

为了抵消数字电路设计的高工程成本,硬件工程师越来越倾向于使用C和c++等高级语言来实现他们的设计。为此,他们使用高级综合(High-Level Synthesis, HLS)工具,将他们的高级规范转换为硬件描述语言,如Verilog。不幸的是,HLS工具本身使用复杂的优化通道,这些优化通道可能存在bug,会在已实现的硬件中无声地引入错误。这类错误的代价很高,因为如果不选择软件补丁,硬件就会很昂贵,或者不可能修复。在这项工作中,我们提出了一种翻译验证方法来验证HLS翻译过程的正确性。给定初始C程序和生成的Verilog代码,我们的方法建立它们的等价性,而不依赖于HLS工具产生的任何中间结果或表示。我们在一个名为VTV的工具中实现了我们的方法,该工具能够验证由Xilinx Vivado HLS编译器编译的程序体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
C-to-Verilog translation validation
To offset the high engineering cost of digital circuit design, hardware engineers are looking increasingly toward high-level languages such as C and C++ to implement their designs. To do this, they employ High-Level Synthesis (HLS) tools that translate their high-level specifications down to a hardware description language such as Verilog. Unfortunately, HLS tools themselves employ sophisticated optimization passes that may have bugs that silently introduce errors in realized hardware. The cost of such errors is high, as hardware is costly or impossible to repair if software patching is not an option. In this work, we present a translation validation approach for verifying the correctness of the HLS translation process. Given an initial C program and the generated Verilog code, our approach establishes their equivalence without relying on any intermediate results or representations produced by the HLS tool. We implemented our approach in a tool called VTV that is able to validate a body of programs compiled by the Xilinx Vivado HLS compiler.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信