texttwiller @ SardiStance, HaSpeede2:文本或上下文文本?社会网络数据在极化预测中的智能应用(短文)

Federico Ferraccioli, Andrea Sciandra, Mattia Da Pont, P. Girardi, Dario Solari, L. Finos
{"title":"texttwiller @ SardiStance, HaSpeede2:文本或上下文文本?社会网络数据在极化预测中的智能应用(短文)","authors":"Federico Ferraccioli, Andrea Sciandra, Mattia Da Pont, P. Girardi, Dario Solari, L. Finos","doi":"10.4000/BOOKS.AACCADEMIA.7152","DOIUrl":null,"url":null,"abstract":"In this contribution we describe the system (i.e. a statistical model) used to participate in Evalita conference 2020, SardiStance (Tasks A and B) and Haspeede2 (Tasks A and B). We first developed a classifier by extracting features from the texts and the social network of users. Then, we fit the data through an extreme gradient boosting, with cross-validation tuning of the hyper-parameters. A key factor for a good performance in SardiStance Task B was the features extraction by using Multidimensional Scaling of the distance matrix (minimum path, undirected graph) applied on each network. The second system exploits the same features above, but it trains and performs predictions in twosteps. The performances proved to be lower than those of the single-step model.","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"TextWiller @ SardiStance, HaSpeede2: Text or Con-text? A Smart Use of Social Network Data in Predicting Polarization (short paper)\",\"authors\":\"Federico Ferraccioli, Andrea Sciandra, Mattia Da Pont, P. Girardi, Dario Solari, L. Finos\",\"doi\":\"10.4000/BOOKS.AACCADEMIA.7152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this contribution we describe the system (i.e. a statistical model) used to participate in Evalita conference 2020, SardiStance (Tasks A and B) and Haspeede2 (Tasks A and B). We first developed a classifier by extracting features from the texts and the social network of users. Then, we fit the data through an extreme gradient boosting, with cross-validation tuning of the hyper-parameters. A key factor for a good performance in SardiStance Task B was the features extraction by using Multidimensional Scaling of the distance matrix (minimum path, undirected graph) applied on each network. The second system exploits the same features above, but it trains and performs predictions in twosteps. The performances proved to be lower than those of the single-step model.\",\"PeriodicalId\":184564,\"journal\":{\"name\":\"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4000/BOOKS.AACCADEMIA.7152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/BOOKS.AACCADEMIA.7152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在这篇文章中,我们描述了用于参加Evalita会议2020、SardiStance(任务a和B)和Haspeede2(任务a和B)的系统(即统计模型)。我们首先通过从文本和用户的社交网络中提取特征开发了一个分类器。然后,我们通过极端梯度增强拟合数据,并对超参数进行交叉验证调优。SardiStance Task B中性能良好的一个关键因素是通过在每个网络上使用距离矩阵(最小路径,无向图)的多维缩放来提取特征。第二个系统利用了上述相同的特征,但它分两步训练和执行预测。结果表明,该模型的性能低于单步模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TextWiller @ SardiStance, HaSpeede2: Text or Con-text? A Smart Use of Social Network Data in Predicting Polarization (short paper)
In this contribution we describe the system (i.e. a statistical model) used to participate in Evalita conference 2020, SardiStance (Tasks A and B) and Haspeede2 (Tasks A and B). We first developed a classifier by extracting features from the texts and the social network of users. Then, we fit the data through an extreme gradient boosting, with cross-validation tuning of the hyper-parameters. A key factor for a good performance in SardiStance Task B was the features extraction by using Multidimensional Scaling of the distance matrix (minimum path, undirected graph) applied on each network. The second system exploits the same features above, but it trains and performs predictions in twosteps. The performances proved to be lower than those of the single-step model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信