Hung V. Vu, N. Tran, M. C. Gursoy, T. Le-Ngoc, S. I. Hariharan
{"title":"高斯混合噪声信道最优输入分布的表征","authors":"Hung V. Vu, N. Tran, M. C. Gursoy, T. Le-Ngoc, S. I. Hariharan","doi":"10.1109/CWIT.2015.7255146","DOIUrl":null,"url":null,"abstract":"This paper addresses the characterization of optimal input distributions for the general additive quadrature Gaussian-mixture (GM) noise channel under an average power constraint. The considered model can be used to represent a wide variety of communication channels, such as the well-known Bernoulli-Gaussian and Middleton Class-A impulsive noise channels, co-channel interference in cellular communications, and cognitive radio channels under imperfect spectrum sensing. We first demonstrate that there exists a unique input distribution achieving the channel capacity and the optimal input has an uniformly distributed phase. By using the Kuhn-Tucker conditions (KTC) and Bernstein's theorem, we then demonstrate that there are always a finite number of mass points on any bounded interval in the optimal amplitude distribution. Equivalently, the optimal amplitude input distribution is discrete. Furthermore, by applying a novel bounding technique on the KTC, it is then shown that the optimal amplitude distribution has a finite number of mass points.","PeriodicalId":426245,"journal":{"name":"2015 IEEE 14th Canadian Workshop on Information Theory (CWIT)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of optimal input distributions for Gaussian-mixture noise channels\",\"authors\":\"Hung V. Vu, N. Tran, M. C. Gursoy, T. Le-Ngoc, S. I. Hariharan\",\"doi\":\"10.1109/CWIT.2015.7255146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the characterization of optimal input distributions for the general additive quadrature Gaussian-mixture (GM) noise channel under an average power constraint. The considered model can be used to represent a wide variety of communication channels, such as the well-known Bernoulli-Gaussian and Middleton Class-A impulsive noise channels, co-channel interference in cellular communications, and cognitive radio channels under imperfect spectrum sensing. We first demonstrate that there exists a unique input distribution achieving the channel capacity and the optimal input has an uniformly distributed phase. By using the Kuhn-Tucker conditions (KTC) and Bernstein's theorem, we then demonstrate that there are always a finite number of mass points on any bounded interval in the optimal amplitude distribution. Equivalently, the optimal amplitude input distribution is discrete. Furthermore, by applying a novel bounding technique on the KTC, it is then shown that the optimal amplitude distribution has a finite number of mass points.\",\"PeriodicalId\":426245,\"journal\":{\"name\":\"2015 IEEE 14th Canadian Workshop on Information Theory (CWIT)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 14th Canadian Workshop on Information Theory (CWIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CWIT.2015.7255146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th Canadian Workshop on Information Theory (CWIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CWIT.2015.7255146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characterization of optimal input distributions for Gaussian-mixture noise channels
This paper addresses the characterization of optimal input distributions for the general additive quadrature Gaussian-mixture (GM) noise channel under an average power constraint. The considered model can be used to represent a wide variety of communication channels, such as the well-known Bernoulli-Gaussian and Middleton Class-A impulsive noise channels, co-channel interference in cellular communications, and cognitive radio channels under imperfect spectrum sensing. We first demonstrate that there exists a unique input distribution achieving the channel capacity and the optimal input has an uniformly distributed phase. By using the Kuhn-Tucker conditions (KTC) and Bernstein's theorem, we then demonstrate that there are always a finite number of mass points on any bounded interval in the optimal amplitude distribution. Equivalently, the optimal amplitude input distribution is discrete. Furthermore, by applying a novel bounding technique on the KTC, it is then shown that the optimal amplitude distribution has a finite number of mass points.