软件演化信息驱动的面向服务的软件集群

Linhui Zhong, Jing He, Nengwei Zhang, P. Zhang, Jing Xia
{"title":"软件演化信息驱动的面向服务的软件集群","authors":"Linhui Zhong, Jing He, Nengwei Zhang, P. Zhang, Jing Xia","doi":"10.1109/BigDataCongress.2016.75","DOIUrl":null,"url":null,"abstract":"Service-oriented software in business is often programmed using Java language. For purpose of making software evolvable and maintainable, the technology of software clustering is often used to make the software modularized. However, traditional software clustering methods have not considered the potential relation between software elements, which cannot be identified by using the static analysis method, so it can make the software not satisfy the principle of \"high cohesion, low coupling\" in the area of software engineering. For solving the problem, this paper proposes a method by introducing the software evolution information into the software clustering process, based on that we construct an extended software dependency model and use Agglomerative Hierarchical Clustering (AHC) algorithm to cluster software. Experiments on two open source project show that this method can improve the accuracy of software clustering and aid the maintainer refactoring business software.","PeriodicalId":407471,"journal":{"name":"2016 IEEE International Congress on Big Data (BigData Congress)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Software Evolution Information Driven Service-Oriented Software Clustering\",\"authors\":\"Linhui Zhong, Jing He, Nengwei Zhang, P. Zhang, Jing Xia\",\"doi\":\"10.1109/BigDataCongress.2016.75\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Service-oriented software in business is often programmed using Java language. For purpose of making software evolvable and maintainable, the technology of software clustering is often used to make the software modularized. However, traditional software clustering methods have not considered the potential relation between software elements, which cannot be identified by using the static analysis method, so it can make the software not satisfy the principle of \\\"high cohesion, low coupling\\\" in the area of software engineering. For solving the problem, this paper proposes a method by introducing the software evolution information into the software clustering process, based on that we construct an extended software dependency model and use Agglomerative Hierarchical Clustering (AHC) algorithm to cluster software. Experiments on two open source project show that this method can improve the accuracy of software clustering and aid the maintainer refactoring business software.\",\"PeriodicalId\":407471,\"journal\":{\"name\":\"2016 IEEE International Congress on Big Data (BigData Congress)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Congress on Big Data (BigData Congress)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BigDataCongress.2016.75\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Congress on Big Data (BigData Congress)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BigDataCongress.2016.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

面向服务的商业软件通常使用Java语言编写。为了使软件具有可扩展性和可维护性,软件集群技术经常被用来实现软件的模块化。然而,传统的软件聚类方法没有考虑到软件元素之间的潜在关系,这种关系无法通过静态分析方法识别,从而使软件不能满足软件工程领域“高内聚、低耦合”的原则。为了解决这一问题,本文提出了一种将软件演化信息引入软件聚类过程的方法,在此基础上构造了一个扩展的软件依赖模型,并用AHC算法对软件进行聚类。在两个开源项目上的实验表明,该方法可以提高软件聚类的准确性,并有助于维护人员重构业务软件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Software Evolution Information Driven Service-Oriented Software Clustering
Service-oriented software in business is often programmed using Java language. For purpose of making software evolvable and maintainable, the technology of software clustering is often used to make the software modularized. However, traditional software clustering methods have not considered the potential relation between software elements, which cannot be identified by using the static analysis method, so it can make the software not satisfy the principle of "high cohesion, low coupling" in the area of software engineering. For solving the problem, this paper proposes a method by introducing the software evolution information into the software clustering process, based on that we construct an extended software dependency model and use Agglomerative Hierarchical Clustering (AHC) algorithm to cluster software. Experiments on two open source project show that this method can improve the accuracy of software clustering and aid the maintainer refactoring business software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信