海报:基于深度学习的传感器多目标检测的边缘计算

Alperen Kalay, Alparslan Fisne
{"title":"海报:基于深度学习的传感器多目标检测的边缘计算","authors":"Alperen Kalay, Alparslan Fisne","doi":"10.1109/SEC54971.2022.00033","DOIUrl":null,"url":null,"abstract":"This study purposes a real-time computing of deep learning-based multi-target detection in defense-purpose edge sensors. Our study suggests two fundamental optimizations to accelerate target detection inference model: algebraic enhancements and post-training quantization. Comprehensive benchmark results show that our computing design achieves real-time multi-target detection on energy-efficient edge devices.","PeriodicalId":364062,"journal":{"name":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Poster: Edge Computing for Deep Learning-based Sensor Multi-Target Detection\",\"authors\":\"Alperen Kalay, Alparslan Fisne\",\"doi\":\"10.1109/SEC54971.2022.00033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study purposes a real-time computing of deep learning-based multi-target detection in defense-purpose edge sensors. Our study suggests two fundamental optimizations to accelerate target detection inference model: algebraic enhancements and post-training quantization. Comprehensive benchmark results show that our computing design achieves real-time multi-target detection on energy-efficient edge devices.\",\"PeriodicalId\":364062,\"journal\":{\"name\":\"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEC54971.2022.00033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC54971.2022.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了基于深度学习的国防边缘传感器多目标检测的实时计算问题。我们的研究提出了加速目标检测推理模型的两种基本优化方法:代数增强和训练后量化。综合基准测试结果表明,我们的计算设计实现了对节能边缘设备的实时多目标检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Poster: Edge Computing for Deep Learning-based Sensor Multi-Target Detection
This study purposes a real-time computing of deep learning-based multi-target detection in defense-purpose edge sensors. Our study suggests two fundamental optimizations to accelerate target detection inference model: algebraic enhancements and post-training quantization. Comprehensive benchmark results show that our computing design achieves real-time multi-target detection on energy-efficient edge devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信