{"title":"capprara等人的集合覆盖贪心启发式的理论证明。","authors":"Torbjörn Larsson, Nils-Hassan Quttineh","doi":"10.1016/j.disopt.2022.100700","DOIUrl":null,"url":null,"abstract":"<div><p>Large scale set covering problems have often been approached by constructive greedy heuristics, and much research has been devoted to the design and evaluation of various greedy criteria for such heuristics. A criterion proposed by Caprara et al. (1999) is based on reduced costs with respect to the yet unfulfilled constraints, and the resulting greedy heuristic is reported to be superior to those based on original costs or ordinary reduced costs.</p><p>We give a theoretical justification of the greedy criterion proposed by Caprara et al. by deriving it from a global optimality condition for general non-convex optimisation problems. It is shown that this criterion is in fact greedy with respect to incremental contributions to a quantity which at termination coincides with the deviation between a Lagrangian dual bound and the objective value of the feasible solution found.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1572528622000135/pdfft?md5=c47eb15145df224a815aa72a5c23497a&pid=1-s2.0-S1572528622000135-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A theoretical justification of the set covering greedy heuristic of Caprara et al.\",\"authors\":\"Torbjörn Larsson, Nils-Hassan Quttineh\",\"doi\":\"10.1016/j.disopt.2022.100700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Large scale set covering problems have often been approached by constructive greedy heuristics, and much research has been devoted to the design and evaluation of various greedy criteria for such heuristics. A criterion proposed by Caprara et al. (1999) is based on reduced costs with respect to the yet unfulfilled constraints, and the resulting greedy heuristic is reported to be superior to those based on original costs or ordinary reduced costs.</p><p>We give a theoretical justification of the greedy criterion proposed by Caprara et al. by deriving it from a global optimality condition for general non-convex optimisation problems. It is shown that this criterion is in fact greedy with respect to incremental contributions to a quantity which at termination coincides with the deviation between a Lagrangian dual bound and the objective value of the feasible solution found.</p></div>\",\"PeriodicalId\":50571,\"journal\":{\"name\":\"Discrete Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1572528622000135/pdfft?md5=c47eb15145df224a815aa72a5c23497a&pid=1-s2.0-S1572528622000135-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572528622000135\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528622000135","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A theoretical justification of the set covering greedy heuristic of Caprara et al.
Large scale set covering problems have often been approached by constructive greedy heuristics, and much research has been devoted to the design and evaluation of various greedy criteria for such heuristics. A criterion proposed by Caprara et al. (1999) is based on reduced costs with respect to the yet unfulfilled constraints, and the resulting greedy heuristic is reported to be superior to those based on original costs or ordinary reduced costs.
We give a theoretical justification of the greedy criterion proposed by Caprara et al. by deriving it from a global optimality condition for general non-convex optimisation problems. It is shown that this criterion is in fact greedy with respect to incremental contributions to a quantity which at termination coincides with the deviation between a Lagrangian dual bound and the objective value of the feasible solution found.
期刊介绍:
Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.